韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 高中學習網 > 高中 > 高中數學

高一數學筆記整理,大一高數筆記整理手寫

  • 高中數學
  • 2023-11-25

高一數學筆記整理?復數中的難點 (1)復數的向量表示法的運算.對于復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,那么,高一數學筆記整理?一起來了解一下吧。

高一物理知識點全部

【 #高一#導語】高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。為各位同學整理了《高一數學重點知識歸納筆記》,希望對你的學習有所幫助!

1.高一數學重點知識歸納筆記 篇一

復數中的難點

(1)復數的向量表示法的運算.對于復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.

(2)復數三角形式的乘方和開方.有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.

(3)復數的輻角主值的求法.

(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.

復數中的重點

(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.

(2)熟練掌握復數三種表示法,以及它們間的互化,并能準確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.

(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.

(4)復數集中一元二次方程和二項方程的解法.

2.高一數學重點知識歸納筆記 篇二

一)兩角和差公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

sin2A=2sinA.cosA

三)半角的只需記住這個:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的余弦可推出降冪公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降冪公式可推出以下常用的化簡公式

1-cosA=sin^(A/2).2

1-sinA=cos^(A/2).2

3.高一數學重點知識歸納筆記 篇三

1.多面體的結構特征

(1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

高一數學集合筆記

【 #高一#導語】高中數學是一個需要經常總結知識點的學科,只有掌握了重要知識點,才能繼續下面的學習。為各位同學整理了《高一年級數學必修一知識點歸納筆記》,希望對你的學習有所幫助!

1.高一年級數學必修一知識點歸納筆記 篇一

對數函數

對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。

(1)對數函數的定義域為大于0的實數集合。

(2)對數函數的值域為全部實數集合。

(3)函數總是通過(1,0)這點。

(4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。

(5)顯然對數函數。

2.高一年級數學必修一知識點歸納筆記 篇二

函數最值及性質的應用

1、函數的最值

a利用二次函數的性質(配方法)求函數的(小)值

b利用圖象求函數的(小)值

c利用函數單調性的判斷函數的(小)值:

如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

2、函數的奇偶性與單調性

奇函數在關于原點對稱的區間上有相同的單調性;

偶函數在關于原點對稱的區間上有相反的單調性。

高一數學第一學期內容

【 #高一#導語】高一數學必修3的學習已經完結,那么數學必修3知識點有哪些呢?為各位同學整理了《高一必修三數學筆記整理》,希望對你的學習有所幫助!

1.高一必修三數學筆記整理 篇一

算法的概念

1、算法概念:

在數學上,現代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.

2.算法的特點:

(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的

(2)確定性:算法中的每一步應該是確定的并且能有效地執行且得到確定的結果,而不應當是模棱兩可.

(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.

(4)不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.

(5)普遍性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.

2.高一必修三數學筆記整理 篇二

概率性質與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式.

3.高一必修三數學筆記整理 篇三

總體和樣本

①在統計學中,把研究對象的全體叫做總體。

高一數學必修一總結筆記

【 #高一#導語】高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。為各位同學整理了《高一數學必修一知識點筆記》,希望對你的學習有所幫助!

1.高一數學必修一知識點筆記 篇一

棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

2.高一數學必修一知識點筆記 篇二

求定義域的幾種情況

①若f(x)是整式,則函數的定義域是實數集R;

②若f(x)是分式,則函數的定義域是使分母不等于0的實數集;

③若f(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實數集合;

④若f(x)是對數函數,真數應大于零。

⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零。

⑥若f(x)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;

⑦若f(x)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題

3.高一數學必修一知識點筆記 篇三

1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得.

(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域.

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.

2、求函數的最值與值域的區別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數的值域是(0,16],值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值.

4.高一數學必修一知識點筆記 篇四

求函數值域的方法:

①直接法:從自變量x的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;

②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);

⑤單調性法:利用函數的單調性求值域;

⑥圖象法:二次函數必畫草圖求其值域;

⑦利用對號函數

⑧幾何意義法:由數形結合,轉化距離等求值域。

高一數學重點筆記

1.高一數學必修一知識歸納筆記 篇一

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

2.高一數學必修一知識歸納筆記 篇二

冪函數

定義

形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

定義域和值域

當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

以上就是高一數學筆記整理的全部內容,1.高一數學必修一知識歸納筆記 篇一 (1)直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此。

猜你喜歡

主站蜘蛛池模板: 招远市| 万年县| 瓮安县| 裕民县| 合江县| 芒康县| 丰原市| 杭锦旗| 肇源县| 花莲市| 武安市| 柳州市| 濮阳市| 辛集市| 娄底市| 阜宁县| 壤塘县| 绥中县| 新干县| 桃园县| 桦川县| 彭山县| 石棉县| 临漳县| 西乌| 娱乐| 师宗县| 镇巴县| 云阳县| 封丘县| 大悟县| 盱眙县| 崇信县| 达州市| 乐清市| 普宁市| 裕民县| 辽宁省| 防城港市| 历史| 许昌市|