高中數學必修一知識點?3. 函數圖象知識歸納 (1)定義: 在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、那么,高中數學必修一知識點?一起來了解一下吧。
高一階段是數學打好基礎的關鍵時期,也是通過努力能夠取得成績,建立數學學習信心的最佳時機。下面是我根據《一線調研高中同步講練測》輔導書整理的一些知識點,大家可以進行學習
初入高中,數學是每個人的必修課。而學習是需要一個系統的框架的。下面是由我為大家整理的“高中數學必修一知識點歸納”,僅供參考,歡迎大家閱讀。
高中數學必修一知識點歸納
高一數學必修1 知識點歸納(一)
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。
把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。
(2)元素的互異性:一個給定集合中的元素是的,不可重復的。
(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
①區間法:將集合中元素的公共屬性描述出來,寫在大括號內表示集合。
必修1復習專題函數之三(函數與反函數)
吳川三中文科數學出版
1.求一個函數的解析式或一個函數的反函數時,注明函數的定義域了嗎?
切記:做題,特別是做大題時, 一定要注意附加條件,如定義域、單位等東西要記得協商
2.反函數存在的條件是什么?(一一對應函數)
求反函數的步驟掌握了嗎?(①反解x;②互換x、y;③注明定義域)
在更多時候,反函數的求法只是在選擇題中出現,這就為我們這些喜歡偷懶的人提供了大方便。請看這個例題:(2004.全國理)函數的反函數是()
A.y=x2-2x+2(x<1)B.y=x2-2x+2(x≥1)C.y=x2-2x(x<1)D.y=x2-2x(x≥1)
原函數定義域為 x〉=1,那反函數值域也為y>=1. 排除選項C,D.現在看值域。原函數至于為y>=1,則反函數定義域為x>=1, 答案為B.
3. 反函數的性質有哪些?
反函數的定義域是原函數的值域,反函數的值域是原函數的定義域,反函數的圖像和原函數關于直線=x對稱(難怪點(x,y)和點(y,x)關于直線y=x對稱
①互為反函數的圖象關于直線y=x對稱;②保存了原來函數的單調性、奇函數性;
由反函數的性質,可以快速的解出很多比較麻煩的題目,如
(04. 上海春季高考)已知函數,則方程的解__________.1
對于這一類題目,其實方法特別簡單,呵呵。
高中必修一數學知識點總結
高一數學必修一的學習,需要大家對知識點進行總結,這樣大家最大效率地提高自己的學習成績。下面高中必修一數學知識點總結是我為大家整理的,在這里跟大家分享一下。
高中必修一數學知識點總結
第一章 集合與函數概念
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:X Kb 1.C om
非負整數集(即自然數集) 記作:N
正整數集 :N*或 N+
整數集: Z
有理數集: Q
實數集: R
1)列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{x?R|x-3>2} ,{x|x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1)有限集 含有有限個元素的集合
(2)無限集 含有無限個元素的集合
(3)空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
是孩子適應學校,適應老師,適應各種學習環境的時候,簡單說就是磨合期。高中知識點那么多,學科壓力很大,很多人剛進入高一,還存在著新鮮勁和學習的動力,雖然有些吃力,但是依舊在力挺。下面是我給大家帶來的高一數學必修一知識點梳理,希望能幫助到你!
高一數學必修一知識點梳理1
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
【第三章:第三章函數的應用】
1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。
以上就是高中數學必修一知識點的全部內容,高一數學必修一必考知識點總結分享 篇1 1、函數知識: 基本初等函數性質的考查,以導數知識為背景的函數問題;以向量知識為背景的函數問題;從具體函數的考查轉向抽象函數考查;從重結果考查轉向重過程考查;從熟悉情景的考查轉向新穎情景的考查。 2、。