韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當(dāng)前位置: 首頁(yè) > 高中 > 高中數(shù)學(xué)

必修二高中數(shù)學(xué),高二數(shù)學(xué)課本電子版

  • 高中數(shù)學(xué)
  • 2024-08-14

必修二高中數(shù)學(xué)?在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解. 高中必修二數(shù)學(xué)知識(shí)點(diǎn)2 1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征 (1)棱柱: 幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形. (2)棱錐 幾何特征:側(cè)面、那么,必修二高中數(shù)學(xué)?一起來(lái)了解一下吧。

高一數(shù)學(xué)書(shū)電子版

相信很多的同學(xué)同學(xué)都是非常的關(guān)心高考數(shù)學(xué)有哪些必考的知識(shí)點(diǎn)的,下面我給大家分享一些高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

高中數(shù)學(xué)必修二知識(shí)點(diǎn)1

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

(2)棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

(3)棱臺(tái):

幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開(kāi)圖是一個(gè)矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)扇形.

(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.

3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

斜二測(cè)畫(huà)法特點(diǎn):原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半.

4、柱體、錐體、臺(tái)體的表面積與體積

(1)幾何體的表面積為幾何體各個(gè)面的面積的和.

(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)

(3)柱體、錐體、臺(tái)體的體積公式

高中數(shù)學(xué)必修二知識(shí)點(diǎn)2

直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.

過(guò)兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.

(3)直線方程

點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.

當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

斜截式:,直線斜率為k,直線在y軸上的截距為b

兩點(diǎn)式:()直線兩點(diǎn),

截矩式:

其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

(4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(5)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(二)垂直直線系

垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

(三)過(guò)定點(diǎn)的直線系

()斜率為k的直線系:,直線過(guò)定點(diǎn);

()過(guò)兩條直線,的交點(diǎn)的直線系方程為

(為參數(shù)),其中直線不在直線系中.

(6)兩直線平行與垂直

注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.

(7)兩條直線的交點(diǎn)

相交

交點(diǎn)坐標(biāo)即方程組的一組解.

方程組無(wú)解;方程組有無(wú)數(shù)解與重合

(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)

(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.

高中數(shù)學(xué)必修二知識(shí)點(diǎn)3

圓的方程

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置.

3、高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過(guò)圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

設(shè)圓,

兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

5、空間點(diǎn)、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

應(yīng)用:判斷直線是否在平面內(nèi)

用符號(hào)語(yǔ)言表示公理1:

公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

符號(hào):平面α和β相交,交線是a,記作α∩β=a.

符號(hào)語(yǔ)言:

公理2的作用:

它是判定兩個(gè)平面相交的方法.

它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn).

它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

公理4:平行于同一條直線的兩條直線互相平行

高中數(shù)學(xué)必修二知識(shí)點(diǎn)4

空間直線與直線之間的位置關(guān)系

異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

異面直線性質(zhì):既不平行,又不相交.

異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直.

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角

(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα

(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);αβ

相交——有一條公共直線.α∩β=b

2、空間中的平行問(wèn)題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,

那么這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個(gè)平面平行的判定定理

(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

(線面平行→面面平行),

(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.

(線線平行→面面平行),

(3)垂直于同一條直線的兩個(gè)平面平行,

兩個(gè)平面平行的性質(zhì)定理

(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)

(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)

3、空間中的垂直問(wèn)題

(1)線線、面面、線面垂直的定義

兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直.

線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直.

平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.

(2)垂直關(guān)系的判定和性質(zhì)定理

線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.

性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.

面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.

性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.

4、空間角問(wèn)題

(1)直線與直線所成的角

兩平行直線所成的角:規(guī)定為.

兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.

在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

(3)二面角和二面角的平面角

二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

直二面角:平面角是直角的二面角叫直二面角.

兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

求二面角的方法

定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

高中數(shù)學(xué)必修二知識(shí)點(diǎn)5

解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題.

(2)應(yīng)用

能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題.

高中數(shù)學(xué)必修二知識(shí)點(diǎn)6

數(shù)列

(1)數(shù)列的概念和簡(jiǎn)單表示法

了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).

了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

(2)等差數(shù)列、等比數(shù)列

理解等差數(shù)列、等比數(shù)列的概念.

掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.

能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.

了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)2022相關(guān)文章:

★高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)大全

★高中數(shù)學(xué)必背知識(shí)點(diǎn)

★高三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

★高中數(shù)學(xué)函數(shù)周期知識(shí)點(diǎn)總結(jié)最新

★2022高二數(shù)學(xué)知識(shí)點(diǎn)人教版

★高三數(shù)學(xué)復(fù)習(xí)計(jì)劃范文2022十篇

★2022年高二數(shù)學(xué)教師工作總結(jié)

★2022高中數(shù)學(xué)教師工作總結(jié)范文10篇

★2022新學(xué)期高中數(shù)學(xué)教學(xué)計(jì)劃5篇

★高二數(shù)學(xué)知識(shí)點(diǎn)筆記

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();

必修二數(shù)學(xué)電子課本

高中數(shù)學(xué)必修二目錄

一、立體幾何

1. 空間幾何的基本概念

2. 直線與平面

3. 多面體與旋轉(zhuǎn)體及其性質(zhì)

二、解析幾何初步

1. 平面直角坐標(biāo)系

2. 直線方程與性質(zhì)

3. 圓的一般方程與性質(zhì)

4. 圓錐曲線的基本特征

三、代數(shù)部分

數(shù)列與差分

數(shù)列的概念與分類

等差數(shù)列及其性質(zhì)

等比數(shù)列及其性質(zhì)

數(shù)列求和與極限概念引入

差分概念及其應(yīng)用簡(jiǎn)介

數(shù)列的應(yīng)用問(wèn)題

四、三角學(xué)基礎(chǔ)與初步應(yīng)用

三角函數(shù)的基本概念

角的概念與弧度制

正弦函數(shù)、余弦函數(shù)、正切函數(shù)的概念與圖像

三角函數(shù)的性質(zhì)與誘導(dǎo)公式

三角函數(shù)的和差公式及其應(yīng)用等。三角函數(shù)的實(shí)際應(yīng)用及模型建立。正弦型函數(shù)的性質(zhì)及應(yīng)用。 三角恒等變換。解三角形。 五、概率初步六、數(shù)理統(tǒng)計(jì)初步隨機(jī)抽樣等知識(shí)點(diǎn) 。通過(guò)對(duì)生活現(xiàn)象中的數(shù)據(jù)歸納和總結(jié)得出簡(jiǎn)單統(tǒng)計(jì)結(jié)論來(lái)對(duì)社會(huì)生產(chǎn)生活起到良好的指導(dǎo)意義,總結(jié)各個(gè)數(shù)量間的相互作用及其統(tǒng)計(jì)規(guī)律性為相關(guān)統(tǒng)計(jì)部門(mén)的決策提供指導(dǎo)幫助。 注:詳細(xì)目錄會(huì)根據(jù)教材版本不同有所差異,請(qǐng)以實(shí)際教材為準(zhǔn)。以上就是高中數(shù)學(xué)必修二的主要內(nèi)容目錄,每一章節(jié)都是數(shù)學(xué)學(xué)科的基礎(chǔ)知識(shí),需要同學(xué)們認(rèn)真學(xué)習(xí)掌握。如需進(jìn)一步了解某一章節(jié)的具體內(nèi)容,可翻閱相關(guān)教材資料進(jìn)行詳細(xì)閱讀。

高一數(shù)學(xué)必修二試卷及答案

高一高二高三數(shù)學(xué)是指《高中數(shù)學(xué)必修一》《高中數(shù)學(xué)必修二》《埋友脊高中數(shù)學(xué)必修三》《高中數(shù)學(xué)必修四》,具體如下:

《高中數(shù)學(xué)必修一》:是高中數(shù)學(xué)學(xué)習(xí)階段順序必修的第一本教學(xué)輔助資料。是2007年人民教育出版社出版的圖書(shū),作彎滲者是人民教育出版社課題材料研究告尺所、中學(xué)數(shù)學(xué)課程教材研究開(kāi)發(fā)中心。

《高中數(shù)學(xué)必修二》,主要內(nèi)容是認(rèn)識(shí)空間圖形,通過(guò)對(duì)空間幾何體的整體把握,培養(yǎng)和發(fā)展空間想象能力。是2007年9月由人民教育出版社出版的圖書(shū),作者是王申懷。

《高中數(shù)學(xué)必修三》:主要內(nèi)容是對(duì)算法,統(tǒng)計(jì),概率知識(shí)的講解與總結(jié)。是新課標(biāo)高中數(shù)學(xué)必修系列的第3本書(shū)籍,分為A、B兩版,由人民教育出版社出版發(fā)行。

4、《高中數(shù)學(xué)必修四》:數(shù)學(xué)4(必修)的內(nèi)容包括三角函數(shù)、平面向量、三角恒等變換。三角函數(shù)是描述周期現(xiàn)象的重要數(shù)學(xué)模型,在數(shù)學(xué)和其他領(lǐng)域中具有重要的作用。這是學(xué)生在高中階段學(xué)習(xí)的最后一個(gè)基本初等函數(shù)。

高一高二高三數(shù)學(xué)目錄

高中數(shù)學(xué)必修二知識(shí)點(diǎn)如下:

1、幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

2、圓錐定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成。

3、正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

4、當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。

5、利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

人教版高一數(shù)學(xué)必修第二冊(cè)

高中必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高中必修二數(shù)學(xué)有哪一些知識(shí)點(diǎn)呢?我們應(yīng)該怎么進(jìn)行總結(jié)呢?高中必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)是我為大家整理的,在這里跟大家分享一下。

高中必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

1定理總結(jié)

公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線。公理3:過(guò)不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。

推論1:經(jīng)過(guò)一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。

推論2:經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面。

推論3:經(jīng)過(guò)兩條平行直線,有且只有一個(gè)平面。

公理4:平行于同一條直線的兩條直線互相平行。

等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。

2空間兩直線的位置關(guān)系

空間兩條直線只有三種位置關(guān)系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無(wú)公共點(diǎn)的角度看可分為兩類:

(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

②直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

以上就是必修二高中數(shù)學(xué)的全部?jī)?nèi)容,高中數(shù)學(xué)必修二知識(shí)點(diǎn)如下:1、幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。2、圓錐定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成。3、。

猜你喜歡

  • 道高一丈影評(píng),道高一丈豆瓣評(píng)分
  • 文科生報(bào)考軍校,適合文科生的軍校
  • 初中生怎么長(zhǎng)高女孩,初二如何長(zhǎng)高女生
  • 高考每科多少分,高考450分很差嗎
主站蜘蛛池模板: 乌拉特中旗| 久治县| 五寨县| 靖边县| 三明市| 钟祥市| 武义县| 滦平县| 秦安县| 宜章县| 随州市| 新源县| 北票市| 梓潼县| 板桥市| 寿光市| 祁东县| 商河县| 新邵县| 赣榆县| 三河市| 盱眙县| 佛坪县| 澄迈县| 河津市| 获嘉县| 旬阳县| 即墨市| 辰溪县| 石泉县| 同江市| 上林县| 武乡县| 东山县| 合山市| 武穴市| 赤壁市| 长沙县| 民权县| 唐海县| 扎鲁特旗|