高中必背數(shù)學(xué)公式?圓的周長公式:\[C=2\pir\]、圓的面積公式:\[S=\pir^2\]、橢圓的面積公式:\[S=\piab\]、平行四邊形面積公式:\[S=bh\]、梯形面積公式:\[S=\frac{1}{2}(a+b)h\]。2、那么,高中必背數(shù)學(xué)公式?一起來了解一下吧。
高考數(shù)學(xué)必背公式如下:
一、兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb。
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)。
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
二、倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga。
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
三、半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)。
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))。
很多人想知道在高中數(shù)學(xué)的學(xué)習(xí)上有哪些需要背的公式,高考數(shù)學(xué)中必背的重點公式有哪些呢?下面我為大家介紹一下!
高中數(shù)學(xué)重點公式大全
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系x1+x2=-b/ax1*x2=c/a注:韋達(dá)定理
判別式b2-4a=0注:方程有相等的兩實根
b2-4ac>0注:方程有兩個不相等的個實根
b2-4ac<0注:方程有共軛復(fù)數(shù)根
2、立體圖形及平面圖形的公式
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s*h圓柱體V=pi*r2h
3、圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
高中數(shù)學(xué)常用公式匯總
1、兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
2、倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
3、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
4、和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
5、某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
6、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
7、余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
8、乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
9、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
10、|a-b|≥|a|-|b| -|a|≤a≤|a|
高中數(shù)學(xué)所有公式大全
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:韋達(dá)定理
判別式 b2-4a=0 注:方程有相等的兩實根
b2-4ac>0 注:方程有兩個不相等的個實根
b2-4ac0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'
圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
高中數(shù)學(xué)公式是高考數(shù)學(xué)復(fù)習(xí)至關(guān)重要的知識點,為了幫助高三考生進行高考數(shù)學(xué)的復(fù)習(xí)。下面我給你分享高中必背數(shù)學(xué)公式,歡迎閱讀。
高中必背數(shù)學(xué)公式:一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系x1+x2=-b/ax1*x2=c/a注:韋達(dá)定理
判別式b2-4a=0注:方程有相等的兩實根
b2-4ac>0注:方程有兩個不相等的個實根
b2-4ac<0注:方程有共軛復(fù)數(shù)根
高中必背數(shù)學(xué)公式:立體圖形及平面圖形的公式
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s*h圓柱體V=pi*r2h
高中必背數(shù)學(xué)公式:圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
高考數(shù)學(xué)必備公式如下:
1.方程:
(1)一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
(2)根與系數(shù)的關(guān)系:X1+X2=-b/a X1*X2=c/a
(3)判別式:
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac>0 注:方程有兩個不等的實根
b2-4ac<0 注:方程沒有實根,有共軛復(fù)數(shù)根
2.三角不等式:
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
3.乘法與因式分解:
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
4.三角函數(shù):
(1)兩角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(2)倍角公式:
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
(3)半角公式:
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
(4)和差化積:
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(5)正弦定理:a/sinA=b/sinB=c/sinC=2R
(6)余弦定理:b2=a2+c2-2accosB
5.數(shù)列前n項和(A~C):
A:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
B:2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
C:13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
6.圓的標(biāo)準(zhǔn)方程 :
(x-a)2+(y-b)2=r2
7.圓的一般方程:
x2+y2+Dx+Ey+F=0
8.拋物線標(biāo)準(zhǔn)方程:
y2=2px y2=-2px;x2=2py x2=-2py
9.面積公式:
(1)直棱柱側(cè)面積:S=c*h;斜棱柱側(cè)面積:S=c'*h
(2)正棱錐側(cè)面積 S=1/2c*h’
(3)正棱臺側(cè)面積:S=1/2(c+c')h'
(4)圓臺側(cè)面積:S=1/2(c+c')l=pi(R+r)l
(5)圓柱側(cè)面積:S=c*h=2pi*h
(6)圓錐側(cè)面積:S=1/2*c*l=pi*r*l
(7)弧長公式:l=a*r;扇形面積公式 s=1/2*l*r
(8)錐體體積公式:V=1/3*S*H(圓錐體體積公式 V=1/3*pi*r2h)
(9)斜棱柱體積:V=S'L
(10)柱體體積公式:V=s*h;圓柱體:V=pi*r2h
希望對您有幫助,謝謝!
高中數(shù)學(xué)是讓很多同學(xué)都頭疼的一個科目,無論你是文科生還是理科生,想要高考考高分,高中數(shù)學(xué)都是你必須要考的,也是要考出好成績的,不然就會給你的整個成績拉后腿。想,下面我為大家整理了高中數(shù)學(xué)必背的88個公式,背好這些公式答題不失分,希望對你有幫助。
高中數(shù)學(xué)必背的88個公式
以上就是高中必背數(shù)學(xué)公式的全部內(nèi)容,高中必背88個數(shù)學(xué)公式有:圓的公式、橢圓公式、兩角和公式、倍角公式、半角公式、和差化積、等差數(shù)列、等比數(shù)列、拋物線等公式。一、高中必背88個數(shù)學(xué)公式——圓的公式 1、圓體積=4/3(pi)(r^3)2、。