韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 首頁 > 高中 > 高中數學

高一數學知識點總結,高一數學重點內容

  • 高中數學
  • 2023-11-25

高一數學知識點總結?學習要經常總結規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、那么,高一數學知識點總結?一起來了解一下吧。

高一數學知識梳理

圓夢教育中心 高一數學知識總結

必修一 一、集合

一、集合有關概念 1. 集合的含義

2. 集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY 的字母組成的集合{H,A,P,Y} (3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

3. 集合的表示:{ ? } 如:{我校的籃球隊員},{太平洋, 大西洋, 印度洋, 北

冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2)集合的表示方法:列舉法與描述法。 ◆ 注意:常用數集及其記法:

非負整數集(即自然數集) 記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R 1)列舉法:{a,b,c??}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方

法。{x∈R| x-3>2} ,{x| x-3>2}

3)語言描述法:例:{不是直角三角形的三角形} 4)Venn 圖:

4、集合的分類:

(1)有限集 含有有限個元素的集合 (2)無限集 含有無限個元素的集合

(3)空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系 1. “包含”關系—子集

注意:A ?B 有兩種可能(1)A 是B 的一部分,;(2)A 與B 是同一集合。

高中數學最難的三章

在學習過程中知識的總結往往很重要,那么高一數學知識點歸納有哪些呢?下面是由我為大家整理的“高一數學知識點總結歸納”,僅供參考,歡迎大家閱讀。

高一數學知識點歸納總結

第一章:集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山;

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y};

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋};

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5};

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:XKb1.Com。

非負整數集(即自然數集)記作:N;

正整數集:N*或N+;

整數集:Z;

有理數集:Q;

實數集:R;

1)列舉法:{a,b,c……};

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{x?R|x-3>2},{x|x-3>2};

3)語言描述法:例:{不是直角三角形的三角形};

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合;

(2)無限集含有無限個元素的集合;

(3)空集不含任何元素的集合例:{x|x2=-5}。

高一知識點歸納

高一數學知識點總結:

1.函數的奇偶性

(1)若f(x)是偶函數,那么f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2.復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由“同增異減”判定。

3.函數圖像

(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上。

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。

(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

高一數學知識點總結歸納

高一數學知識點總結:

1、函數的奇偶性

(1)若f(x)是偶函數,那么f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2、復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由“同增異減”判定。

數學

數學起源于人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,并能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。

高數一知識點總結

很多同學在學習高一數學時,因為之前沒有做過的總結,導致復習的效率不高。下面是由我為大家整理的“2022高一數學知識點總結大全(非常全面)”,僅供參考,歡迎大家閱讀本文。

高一數學知識點重點總結歸納1

圓錐曲線性質:

一、圓錐曲線的定義

1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.

2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.

3.圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線.當01時為雙曲線.

二、圓錐曲線的方程

1.橢圓:+ =1(a>b>0)或+ =1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:- =1(a>0,b>0)或- =1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1.橢圓:+ =1(a>b>0)

(1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e= ∈(0,1)

2.雙曲線:- =1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e= ∈(1,+∞)(5)準線:x=± (6)漸近線:y=± x

3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:( ,0)(4)離心率:e=1

高一數學知識點重點總結歸納2

集合與元素

一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

以上就是高一數學知識點總結的全部內容,高一數學知識點總結:1、函數的奇偶性 (1)若f(x)是偶函數,那么f(x)=f(-x)。(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數)。

猜你喜歡

主站蜘蛛池模板: 安溪县| 丘北县| 黄大仙区| 霞浦县| 乌拉特中旗| 阿城市| 沙河市| 平潭县| 伊吾县| 昔阳县| 石门县| 漾濞| 高州市| 华安县| 深水埗区| 武宣县| 库车县| 台中县| 三河市| 启东市| 金寨县| 日土县| 神木县| 鹿泉市| 包头市| 义乌市| 绍兴市| 兴安盟| 门头沟区| 长泰县| 汽车| 岢岚县| 兴安县| 东乌珠穆沁旗| 枣庄市| 司法| 临猗县| 太和县| 新丰县| 十堰市| 汉川市|