韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 高中學習網 > 高中 > 高中數學

數學公式高中,高數一公式大全

  • 高中數學
  • 2024-10-31

數學公式高中?8、倍角公式 tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 9、那么,數學公式高中?一起來了解一下吧。

高一方程式數學

在數學里公式的重要性不言而喻,那么高中數學公式都有哪些呢?下面是由我為大家整理的“高中數學公式大全(完整版)精選”,僅供參考,歡迎大家閱讀本文。

高中數學公式大全(完整版)精選

1、兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

2、乘法與因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) 

a^3-b^3=(a-b(a^2+ab+b^2)

3、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑。

高中數學92個公式全總結

三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a

根與系數的關系X1+X2=-b/aX1·X2=c/a 注:韋達定理判別式

b2-4a=0 注:方程有相等的兩實根

b2-4ac>0 注:方程有一個實根

b2-4ac<0 注:方程有共軛復數

三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些數列前n項和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑余弦定理b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

圓的標準方程(x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

拋物線標準方程y2=2pxy2=-2px x2=2pyx2=-2py直棱柱側面積S=c·h斜棱柱側面積S=c'·h正棱錐側面積S=1/2c·h'正

棱臺側面積S=1/2(c+c')h'圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi·r2圓柱側面積S=c·h=2pi·h圓錐側面積S=1/2·c·l=pi·r·l弧長公式l=a·ra是圓心角的弧度數r>0扇形面積公式s=1/2·l·r錐體體積公式V=1/3·S·H圓錐體體積公式V=1/3·pi·r2h斜棱柱體積V=S'L 注:其中S'是直截面面積,L是側棱長柱體體積公式;V=s·h

圓柱體V=pi·r2h正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑余弦定理b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角圓的標準方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標圓的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0拋物線標準方程y^2=2pxy^2=-2px x^2=2pyx^2=-2py直棱柱側面積S=c·h斜棱柱側面積S=c'·h正棱錐側面積S=1/2c·h'正棱臺側面積S=1/2(c+c')h'圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi·r2圓柱側面積S=c·h=2pi·h圓錐側面積S=1/2·c·l=pi·r·l

弧長公式l=a·ra是圓心角的弧度數r>0扇形面積公式s=1/2·l·r錐體體積公式V=1/3·S·H斜棱柱體積V=S'L 注:其中,S'是直截面面積,L是側棱長柱體體積公式V=s·h圓柱體V=pi·r2h倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些數列前n項和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/22+4+6+8+10+12+14+…+(2n)=n(n+1)51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3常用導數公式1、y=c(c為常數)y'=02、y=x^ny'=nx^(n-1)3、y=a^xy'=a^xlna4、y=e^xy'=e^x5、y=logaxy'=logae/x6、y=lnxy'=1/x7、y=sinxy'=cosx8、y=cosxy'=-sinx9、y=tanxy'=1/cos^2x10、y=cotxy'=-1/sin^2x11、y=arcsinxy'=1/√1-x^212、y=arccosxy'=-1/√1-x^213、y=arctanxy'=1/1+x^214、y=arccotxy'=-1/1+x^2

高中數學公式及知識點

1、常用數學公式表

(1)乘法與因式分解

a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式

|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根與系數的關系:X1+X2=-b/aX1*X2=c/a,注:韋達定理。

(5)判別式

1)b2-4a=0,注:方程有相等的兩實根。

2)b2-4ac>0,注:方程有一個實根。

3)b2-4ac

高一數學知識點歸納大全

高中數學中有許多重要的公式,以下是一些必須記住的公式:

1.三角函數公式:正弦、余弦和正切函數的基本關系式,如sin^2(x)+cos^2(x)=1,tan(x)=sin(x)/cos(x)等。

2.二次函數公式:二次函數的標準形式y=ax^2+bx+c,其中a、b和c是常數,還有頂點坐標公式(-b/2a,4ac-b^2/4a)。

3.三角形面積公式:根據海倫公式,三角形的面積S=√[p(p-a)(p-b)(p-c)],其中a、b和c是三角形的三邊長,p是半周長,即(a+b+c)/2。

4.圓的面積和周長公式:圓的面積A=πr^2,圓的周長C=2πr,其中r是圓的半徑。

5.導數公式:求函數的導數時,基本的導數公式包括常數、冪函數、指數函數、對數函數、三角函數等的導數公式。

6.積分公式:求函數的積分時,基本的積分公式包括常數、冪函數、指數函數、對數函數、三角函數等的積分公式。

7.三角恒等式:例如正弦定理sinA/a=sinB/b=sinC/c,余弦定理cosA=(b^2+c^2-a^2)/(2bc),以及勾股定理a^2+b^2=c^2等。

8.概率公式:概率的基本公式包括加法法則、乘法法則、條件概率、獨立事件等。

高中數學必背100個公式

高中所有數學公式整理

圓的公式

1、圓體積=4/3Π(r^3)

2、面積=Π(r^2)

3、周長=2Πr

4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】

5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

二.橢圓公式

1、橢圓周長公式:l=2πb+4(a-b)

2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

3、橢圓面積公式:s=πab

4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。

三.兩角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

四.倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

五.半角公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

六.和差化積

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

七.等差數列

1、等差數列的通項公式為:an=a1+(n-1)d (1)

2、前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)從(1)式可以看出,an是n的一次數函(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0.在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項.,且任意兩項am,an的關系為:an=am+(n-m)d它可以看作等差數列廣義的通項公式.

3、從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等.和=(首項+末項)*項數÷2項數=(末項-首項)÷公差+1首項=2和÷項數-末項末項=2和÷項數-首項項數=(末項-首項)/公差+1

八.等比數列

1、等比數列的通項公式是:An=A1*q^(n-1)

2、前n項和公式是:Sn=[A1(1-q^n)]/(1-q)且任意兩項am,an的關系為an=am·q^(n-m)

3、從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,則有:ap·aq=am·an,等比中項:aq·ap=2ar ar則為ap,aq等比中項.記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列.

九.拋物線

1、拋物線:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。

以上就是數學公式高中的全部內容,高中必備數學公式如下:一、sinh-1 x dx = x sinh-1 x-+ C 二、cosh-1 x dx = x cosh-1 x-+ C 三、tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C 四、coth-1 x dx = x coth-1 x- ln | 1-x2|+ C 五、sech-1 x dx = x sech-1 x- sin-1 x + C 六、。

猜你喜歡

主站蜘蛛池模板: 广昌县| 贡觉县| 新沂市| 富顺县| 崇文区| 兴文县| 津南区| 旺苍县| 织金县| 齐河县| 游戏| 通州区| 桃园市| 宜都市| 汉川市| 南漳县| 平和县| 呼和浩特市| 正宁县| 筠连县| 浠水县| 本溪| 临夏市| 基隆市| 峨眉山市| 德钦县| 奉新县| 彝良县| 定州市| 灵宝市| 凤城市| 离岛区| 七台河市| 北海市| 湾仔区| 中西区| 尖扎县| 宜川县| 泰来县| 台中县| 六枝特区|