韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

高一數(shù)學(xué)必修五,數(shù)學(xué)必修一電子課本

  • 高中數(shù)學(xué)
  • 2024-05-27

高一數(shù)學(xué)必修五?(2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.2.高一數(shù)學(xué)必修五知識點筆記 篇二 二面角 (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。那么,高一數(shù)學(xué)必修五?一起來了解一下吧。

人教版高一數(shù)學(xué)必修五目錄

一、集合與簡易邏輯:

一、理解集合中的有關(guān)概念

(1)集合中元素的特征: 確定性 , 互異性 , 無序性 。

(2)集合與元素的關(guān)系用符號=表示。

(3)常用數(shù)集的符號表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實數(shù)集 。

(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

二、函數(shù)

一、映射與函數(shù):

(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:

二、函數(shù)的三要素:

相同函數(shù)的判斷方法:①對應(yīng)法則 ;②定義域 (兩點必須同時具備)

(1)函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

(2)函數(shù)定義域的求法:

①含參問題的定義域要分類討論;

②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。

(3)函數(shù)值域的求法:

①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如: 的形式;

②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;

④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;

⑥基本不等式法:轉(zhuǎn)化成型如: ,利用平均值不等式公式來求值域;

⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

高一數(shù)學(xué)必修五知識點總結(jié)

【 #高一#導(dǎo)語】所有的人都是凡人,但所有的人都不甘于平庸。我們一定要相信自己,只要艱苦努力,奮發(fā)進取,在絕望中也能尋找到希望,平凡的人生終將會發(fā)出耀眼的光芒。高一頻道為各位同學(xué)整理了《高一數(shù)學(xué)必修五知識點梳理》,希望對你有所幫助!

1.高一數(shù)學(xué)必修五知識點梳理

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

⑸平面向量:有關(guān)概念與初等運算、坐標運算、數(shù)量積及其應(yīng)用

⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用

2.高一數(shù)學(xué)必修五知識點梳理

1.不等式的定義

在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數(shù)的大小

兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

3.不等式的性質(zhì)

(1)對稱性:ab

(2)傳遞性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可開方:a0

(nN,n2).

注意:

一個技巧

作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.

一種方法

待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.

3.高一數(shù)學(xué)必修五知識點梳理

概率性質(zhì)與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.

4.高一數(shù)學(xué)必修五知識點梳理

1.數(shù)列的函數(shù)理解:

①數(shù)列是一種特殊的函數(shù)。

高中數(shù)學(xué)必修一至必修五公式

高一是我們進入高中時期的第一階段,我們應(yīng)該完善己身,好好學(xué)習(xí)。而數(shù)學(xué)也是我們必須學(xué)習(xí)的重要課程之一,我為各位同學(xué)整理了高一年級數(shù)學(xué)必修五知識點總結(jié),希望對你有所幫助!

高一數(shù)學(xué)必修五知識點總結(jié)1

【差數(shù)列的基本性質(zhì)】

⑴公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.

⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.

⑶若{a}、{b}為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.

⑷對任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的通項公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當{a}為等差數(shù)列時,有:a+a+a+…=a+a+a+….

⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項數(shù)之差).

⑺如果{a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差數(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.

⑼當公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當d<0時,等差數(shù)列中的數(shù)隨項數(shù)的減少而減小;d=0時,等差數(shù)列中的數(shù)等于一個常數(shù).

⑽設(shè)a,a,a為等差數(shù)列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

⑴數(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數(shù)).

⑵在等差數(shù)列{a}中,當項數(shù)為2n(nN)時,S-S=nd,=;當項數(shù)為(2n-1)(n)時,S-S=a,=.

⑶若數(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…仍然成等差數(shù)列,公差為.

⑷若兩個等差數(shù)列{a}、{b}的前n項和分別是S、T(n為奇數(shù)),則=.

⑸在等差數(shù)列{a}中,S=a,S=b(n>m),則S=(a-b).

⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(n,)均在直線y=x+(a-)上.

⑺記等差數(shù)列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.

【等比數(shù)列的基本性質(zhì)】

⑴公比為q的等比數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等比數(shù)列,其公比為q(m為等距離的項數(shù)之差).

⑵對任何m、n,在等比數(shù)列{a}中有:a=a·q,特別地,當m=1時,便得等比數(shù)列的通項公式,此式較等比數(shù)列的通項公式更具有普遍性.

⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數(shù),且t+k,p,…,m+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當{a}為等比數(shù)列時,有:a.a.a.…=a.a.a.…..

⑷若{a}是公比為q的等比數(shù)列,則{|a|}、{a}、{ka}、{}也是等比數(shù)列,其公比分別為|q|}、{q}、{q}、{}.

⑸如果{a}是等比數(shù)列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數(shù)列.

⑹如果{a}是等比數(shù)列,那么對任意在n,都有a·a=a·q>0.

⑺兩個等比數(shù)列各對應(yīng)項的積組成的數(shù)列仍是等比數(shù)列,且公比等于這兩個數(shù)列的公比的積.

⑻當q>1且a>0或00且01時,等比數(shù)列為遞減數(shù)列;當q=1時,等比數(shù)列為常數(shù)列;當q<0時,等比數(shù)列為擺動數(shù)列.

高中數(shù)學(xué)必修五:等比數(shù)列前n項和公式S的基本性質(zhì)

⑴如果數(shù)列{a}是公比為q的等比數(shù)列,那么,它的前n項和公式是S=

也就是說,公比為q的等比數(shù)列的前n項和公式是q的分段函數(shù)的一系列函數(shù)值,分段的界限是在q=1處.因此,使用等比數(shù)列的前n項和公式,必須要弄清公比q是可能等于1還是必不等于1,如果q可能等于1,則需分q=1和q≠1進行討論.

⑵當已知a,q,n時,用公式S=;當已知a,q,a時,用公式S=.

⑶若S是以q為公比的等比數(shù)列,則有S=S+qS.⑵

⑷若數(shù)列{a}為等比數(shù)列,則S,S-S,S-S,…仍然成等比數(shù)列.

⑸若項數(shù)為3n的等比數(shù)列(q≠-1)前n項和與前n項積分別為S與T,次n項和與次n項積分別為S與T,最后n項和與n項積分別為S與T,則S,S,S成等比數(shù)列,T,T,T亦成等比數(shù)列

萬能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)

升冪公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2

降冪公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα

(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα

(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα

(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα

(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,

tan(π/2+α)=-cotα,cot(π/2+α)=-tanα

(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,

tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα

(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,

tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z

注意:為方便做題,習(xí)慣我們把α看成是一個位于第一象限且小于90°的角;

當k是奇數(shù)的時候,等式右邊的三角函數(shù)發(fā)生變化,如sin變成cos.偶數(shù)則不變;

用角(k·π/2±α)所在的象限確定等式右邊三角函數(shù)的正負.例:tan(3π/2+α)=-cotα

∵在這個式子中k=3,是奇數(shù),因此等式右邊應(yīng)變?yōu)閏ot

又,∵角(3π/2+α)在第四象限,tan在第四象限為負值,因此為使等式成立,等式右邊應(yīng)為-cotα.三角函數(shù)在各象限中的正負分布

sin:第一第二象限中為正;第三第四象限中為負cos:第一第四象限中為正;第二第三象限中為負cot、tan:第一第三象限中為正;第二第四象限中為負。

數(shù)學(xué)必修一電子課本

【 #高一#導(dǎo)語】進入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應(yīng)盡快進入學(xué)習(xí)狀態(tài)。高一頻道為正在努力學(xué)習(xí)的你整理了《高一年級數(shù)學(xué)必修五知識點》,希望對你有幫助!

1.高一年級數(shù)學(xué)必修五知識點

函數(shù)模型及其應(yīng)用

本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。

1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。

2、用函數(shù)解應(yīng)用題的基本步驟是:

(1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);

(2)設(shè)量建模;

(3)求解函數(shù)模型;

(4)簡要回答實際問題。

常見考法:

本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

誤區(qū)提醒:

1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。

2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

高中數(shù)學(xué)必修五第二章知識點

一、集合與簡易邏輯:

一、理解集合中的有關(guān)概念

(1)集合中元素的特征: 確定性 , 互異性 , 無序性 。

(2)集合與元素的關(guān)系用符號=表示。

(3)常用數(shù)集的符號表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實數(shù)集 。

(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

以上就是高一數(shù)學(xué)必修五的全部內(nèi)容,⑸平面向量:有關(guān)概念與初等運算、坐標運算、數(shù)量積及其應(yīng)用 ⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用 2.高一數(shù)學(xué)必修五知識點梳理 1.不等式的定義 在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、、。

猜你喜歡

主站蜘蛛池模板: 普格县| 乾安县| 休宁县| 乌什县| 永德县| 邢台县| 庆阳市| 扎鲁特旗| 密山市| 静宁县| 泾川县| 翁源县| 扶余县| 娄烦县| 新丰县| 长宁县| 建宁县| 民县| 固原市| 辛集市| 上杭县| 宝山区| 宿州市| 玉门市| 齐齐哈尔市| 聂拉木县| 连江县| 瓦房店市| 南皮县| 清水县| 上杭县| 云霄县| 二连浩特市| 阜平县| 马公市| 湖口县| 昆明市| 昌吉市| 化德县| 天台县| 金门县|