高中一年級數學上冊?3、數列的極限:數列的極限是描述數列變化趨勢的一個重要概念。當數列的項數趨近于無窮大時,數列的極限可以幫助我們判斷數列是否收斂,并求出數列的極限值。高一數學的重要性 一、奠定數學基礎 高一數學是高中數學的基礎階段,那么,高中一年級數學上冊?一起來了解一下吧。
偶爾會抱怨為什么自己沒天賦,又或者因為別人能輕易做到自己做不到的事而不平衡。從某種角度上來講,這完全沒辦法。現在的我倒覺得這樣也好,世上或許有人能一步登天,但那人不是我。自己一點一點抓住的東西,比什么都來得真實。用時間換天份,用堅持換機遇,我走得很慢,但我絕不回頭。我高一頻道為大家整理了《高一數學上學期知識點復習》供大家參考!
高一數學上學期的所有知識點
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
高一數學期末必考的知識點概括1
復數是高中代數的重要內容,在高考試題中約占8%-10%,一般的出一道基礎題和一道中檔題,經常與三角、解析幾何、方程、不等式等知識綜合.本章主要內容是復數的概念,復數的代數、幾何、三角表示方法以及復數的運算.方程、方程組,數形結合,分域討論,等價轉化的數學思想與方法在本章中有突出的體現.而復數是代數,三角,解析幾何知識,相互轉化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強.
在本章學習結束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數形式的方程、復數集中的數列等邊緣性的知識還有待于進一步的研究.
1.知識網絡圖
復數知識點網絡圖
2.復數中的難點
(1)復數的向量表示法的運算.對于復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.
(2)復數三角形式的乘方和開方.有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.
(3)復數的輻角主值的求法.
(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.
3.復數中的重點
(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.
(2)熟練掌握復數三種表示法,以及它們間的互化,并能準確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.
(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.
(4)復數集中一元二次方程和二項方程的解法.
高一數學期末必考的知識點概括2
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高一數學期末必考的知識點概括3
定義:
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。
1.高一上學期數學知識點
數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中并沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1。
(3)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.
(4)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.高一上學期數學知識點
函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
3.高一上學期數學知識點
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。
上冊主要學集合、函數和數列
下冊主要學三角函數和平面向量
沒有重點可言,因為全是重點。
函數和三角函數一定要學好,這是高二學二次函數圖象和立體幾何的基礎,可以這么說,學不好函數和三角函數的話就肯定學不好函數圖象和立體幾何。
擴展資料:
三角函數
①借助單位圓理解任意角三角函數(正弦、余弦、正切)的定義。
②借助單位圓中的三角函數線推導出誘導公式( 的正弦、余弦、正切),能畫出 的圖象,了解三角函數的周期性。
③借助圖象理解正弦函數、余弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。
④理解同角三角函數的基本關系式:
⑤結合具體實例,了解 的實際意義;能借助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。
⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。
參考資料來源:百度百科-高中數學
高一數學上冊的知識點相對較多,以下是其中三個重要的知識點:
一、函數與映射
1、函數的概念:函數是一種特殊的映射關系,它描述了自變量和因變量之間的對應關系。在函數中,每個自變量只能對應一個唯一的因變量,而一個因變量可以對應多個自變量。
2、函數的表示方法:函數可以用解析式、圖像和表格等方式表示。其中,解析式是最常用的表示方法,它可以明確地給出自變量和因變量之間的關系。
3、函數的性質:函數有很多重要的性質,如單調性、奇偶性、周期性等。這些性質可以幫助我們更好地理解函數的圖像和行為,為解決函數問題提供重要的思路和方法。
二、三角函數
1、三角函數的定義:三角函數是描述直角三角形中角度與邊長之間關系的函數。常見的三角函數有正弦、余弦和正切等。
2、三角函數的圖像和性質:三角函數的圖像具有周期性、對稱性等重要性質。這些性質可以幫助我們更好地理解三角函數的圖像和行為,為解決三角函數問題提供重要的思路和方法。
3、三角函數的應用:三角函數在物理、工程、經濟等領域都有廣泛的應用。例如,在物理學中,三角函數被用來描述物體的運動軌跡;在工程學中,三角函數被用來計算建筑物的角度和高度等。
以上就是高中一年級數學上冊的全部內容,上冊主要學集合、函數和數列 下冊主要學三角函數和平面向量 沒有重點可言,因為全是重點。函數和三角函數一定要學好,這是高二學二次函數圖象和立體幾何的基礎,可以這么說。