韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 高中學習網 > 高中 > 高中數學

數學高二知識點,高二數學知識點總結大全

  • 高中數學
  • 2024-01-05

數學高二知識點?(2)兩焦點在坐標軸上,兩焦點的中點為坐標原點,焦距為8,橢圓上一點到兩焦點的距離之和為12.3.已知橢圓經過點和點,求橢圓的標準方程。4.求中心在原點,焦點在坐標軸上,且經過兩點的橢圓標準方程。那么,數學高二知識點?一起來了解一下吧。

數學知識點總結大全

1.高二數學重點知識點總結

1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.

2、圓的方程

(1)標準方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形.

(3)求圓方程的方法:

一般都采用待定系數法:先設后求.確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.

3、高中數學必修二知識點總結:直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

設圓,

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓.

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

5、空間點、直線、平面的位置關系

公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內.

應用:判斷直線是否在平面內

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a.

2.高二數學重點知識點總結

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:并(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

高二上數學知識點總結

【一】

第一部分:基礎知識梳理

知識點一橢圓的定義

平面內到兩個定點的距離之和等于常數(大于)的點的集合叫做橢圓。兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距。

根據橢圓的定義可知:橢圓上的點M滿足集合,,且都為常數。

當即時,集合P為橢圓。

當即時,集合P為線段。

當即時,集合P為空集。

知識點二橢圓的標準方程

(1),焦點在軸上時,焦點為,焦點。

(2),焦點在軸上時,焦點為,焦點。

知識點三橢圓方程的一般式

這種形式的方程在課本中雖然沒有明確給出,但在應用中有時比較方便,在此提供出來,作為參考:

(其中為同號且不為零的常數,),它包含焦點在軸或軸上兩種情形。方程可變形為。

當時,橢圓的焦點在軸上;當時,橢圓的焦點在軸上。

一般式,通常也設為,應特別注意均大于0,標準方程為。

知識點四橢圓標準方程的求法

1.定義法

橢圓標準方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當問題是以實際問題給出時,一定要注意使實際問題有意義,因此要恰當地表示橢圓的范圍。

例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿足,且成等差數列時,頂點A的曲線方程。

變式練習1.在△ABC中,點B(-6,0)、C(0,8),且成等差數列。

高二數學知識點總結大全

高二數學知識點歸納總結(一)

(1)必然事件:在條件S下,一定會發生的事件,叫相對于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會發生的事件,叫相對于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統稱為相對于條件S的確定事件;

(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對于條件S的隨機事件;

(5)頻數與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;稱事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的概率。

(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率。

高二數學知識點歸納總結(二)

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。

數學高中知識

【篇一】高二數學重要知識點歸納

1.求函數的單調性:

利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,

(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立。

2.求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

高二數學解題技巧

【篇一】高二數學重點知識點梳理

簡單隨機抽樣的定義:

一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

簡單隨機抽樣的特點:

(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為

;在整個抽樣過程中各個個體被抽到的概率為

(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;

(3)簡單隨機抽樣方法,體現了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎.

(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣

簡單抽樣常用方法:

(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數不多時優點:抽簽法簡便易行,當總體的個體數不太多時適宜采用抽簽法.

(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數字;第三步,獲取樣本號碼概率.

【篇二】高二數學重點知識點梳理

集合的分類:

(1)按元素屬性分類,如點集,數集。

以上就是數學高二知識點的全部內容,【篇一】高二數學重要知識點歸納 1.求函數的單調性:利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0。

猜你喜歡

主站蜘蛛池模板: 芮城县| 上高县| 雷波县| 堆龙德庆县| 闻喜县| 新兴县| 沂水县| 衡阳县| 江源县| 定边县| 象山县| 阿坝| 新泰市| 桃园市| 准格尔旗| 罗田县| 彭山县| 大理市| 西安市| 吴旗县| 吉首市| 高密市| 襄汾县| 兰州市| 万年县| 灵璧县| 岳普湖县| 昔阳县| 谷城县| 邵阳县| 定州市| 宝鸡市| 武安市| 龙泉市| 高密市| 诏安县| 德惠市| 东海县| 阜平县| 任丘市| 墨竹工卡县|