韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當(dāng)前位置: 首頁 > 高中 > 高中數(shù)學(xué)

數(shù)學(xué)高二知識點(diǎn),高二數(shù)學(xué)知識點(diǎn)總結(jié)大全

  • 高中數(shù)學(xué)
  • 2024-01-05

數(shù)學(xué)高二知識點(diǎn)?(2)兩焦點(diǎn)在坐標(biāo)軸上,兩焦點(diǎn)的中點(diǎn)為坐標(biāo)原點(diǎn),焦距為8,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為12.3.已知橢圓經(jīng)過點(diǎn)和點(diǎn),求橢圓的標(biāo)準(zhǔn)方程。4.求中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn)的橢圓標(biāo)準(zhǔn)方程。那么,數(shù)學(xué)高二知識點(diǎn)?一起來了解一下吧。

數(shù)學(xué)知識點(diǎn)總結(jié)大全

1.高二數(shù)學(xué)重點(diǎn)知識點(diǎn)總結(jié)

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時,方程表示圓,此時圓心為,半徑為

當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形.

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

3、高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

設(shè)圓,

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

當(dāng)時兩圓外離,此時有公切線四條;

當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

5、空間點(diǎn)、直線、平面的位置關(guān)系

公理1:如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線是所有的點(diǎn)都在這個平面內(nèi).

應(yīng)用:判斷直線是否在平面內(nèi)

用符號語言表示公理1:

公理2:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a.

2.高二數(shù)學(xué)重點(diǎn)知識點(diǎn)總結(jié)

一、隨機(jī)事件

主要掌握好(三四五)

(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

高二上數(shù)學(xué)知識點(diǎn)總結(jié)

【一】

第一部分:基礎(chǔ)知識梳理

知識點(diǎn)一橢圓的定義

平面內(nèi)到兩個定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的集合叫做橢圓。兩個定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距。

根據(jù)橢圓的定義可知:橢圓上的點(diǎn)M滿足集合,,且都為常數(shù)。

當(dāng)即時,集合P為橢圓。

當(dāng)即時,集合P為線段。

當(dāng)即時,集合P為空集。

知識點(diǎn)二橢圓的標(biāo)準(zhǔn)方程

(1),焦點(diǎn)在軸上時,焦點(diǎn)為,焦點(diǎn)。

(2),焦點(diǎn)在軸上時,焦點(diǎn)為,焦點(diǎn)。

知識點(diǎn)三橢圓方程的一般式

這種形式的方程在課本中雖然沒有明確給出,但在應(yīng)用中有時比較方便,在此提供出來,作為參考:

(其中為同號且不為零的常數(shù),),它包含焦點(diǎn)在軸或軸上兩種情形。方程可變形為。

當(dāng)時,橢圓的焦點(diǎn)在軸上;當(dāng)時,橢圓的焦點(diǎn)在軸上。

一般式,通常也設(shè)為,應(yīng)特別注意均大于0,標(biāo)準(zhǔn)方程為。

知識點(diǎn)四橢圓標(biāo)準(zhǔn)方程的求法

1.定義法

橢圓標(biāo)準(zhǔn)方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當(dāng)問題是以實(shí)際問題給出時,一定要注意使實(shí)際問題有意義,因此要恰當(dāng)?shù)乇硎緳E圓的范圍。

例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿足,且成等差數(shù)列時,頂點(diǎn)A的曲線方程。

變式練習(xí)1.在△ABC中,點(diǎn)B(-6,0)、C(0,8),且成等差數(shù)列。

高二數(shù)學(xué)知識點(diǎn)總結(jié)大全

高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)(一)

(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;

(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;

(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率。

高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)(二)

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。

數(shù)學(xué)高中知識

【篇一】高二數(shù)學(xué)重要知識點(diǎn)歸納

1.求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

2.求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

高二數(shù)學(xué)解題技巧

【篇一】高二數(shù)學(xué)重點(diǎn)知識點(diǎn)梳理

簡單隨機(jī)抽樣的定義:

一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機(jī)會都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

簡單隨機(jī)抽樣的特點(diǎn):

(1)用簡單隨機(jī)抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為

;在整個抽樣過程中各個個體被抽到的概率為

(2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個抽取,且各個個體被抽到的概率相等;

(3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

(4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個地進(jìn)行抽取;它是一種等概率抽樣

簡單抽樣常用方法:

(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進(jìn)行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法.

(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率.

【篇二】高二數(shù)學(xué)重點(diǎn)知識點(diǎn)梳理

集合的分類:

(1)按元素屬性分類,如點(diǎn)集,數(shù)集。

以上就是數(shù)學(xué)高二知識點(diǎn)的全部內(nèi)容,【篇一】高二數(shù)學(xué)重要知識點(diǎn)歸納 1.求函數(shù)的單調(diào)性:利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0。

猜你喜歡

主站蜘蛛池模板: 通江县| 石景山区| 大悟县| 延川县| 靖宇县| 峨边| 新民市| 崇左市| 大石桥市| 平和县| 富蕴县| 赤水市| 平谷区| 淮阳县| 龙泉市| 任丘市| 巴青县| 扶沟县| 壤塘县| 宁波市| 宁明县| 广西| 会宁县| 广东省| 新沂市| 百色市| 历史| 巴彦县| 盘山县| 宜春市| 青冈县| 凤凰县| 德令哈市| 屏边| 二连浩特市| 龙山县| 西峡县| 建湖县| 博客| 荆门市| 西乌珠穆沁旗|