韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當前位置: 高中學習網 > 高中 > 高考

2017年高考數學第一題,2016文科高考數學題2卷

  • 高考
  • 2023-07-19

2017年高考數學第一題?一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={x|x<1},B={x|},則A.B.C.D.2.如圖,那么,2017年高考數學第一題?一起來了解一下吧。

2017年全國高考數學一卷及答案

一、選擇題

1.已知拋物線y2=2px(p>0)的焦點為F,點P1(x1,y1),P2(x2,y2),P3(x3,y3)在拋物線上,且2x2=x1+x3,則有()

A.|FP1|+|FP2|=|FP3|

B.|FP1|2+|FP2|2=|FP3|2

C.2|FP2|=|FP1|+|FP3|

D.|FP2|2=|FP1|·|FP3|

答案:C解題思路:拋物線的準線方程為x=-,由定義得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,則|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故選C.

2.與拋物線y2=8x相切傾斜角為135°的直線l與x軸和y軸的交點分別是A和B,那么過A,B兩點的最小圓截拋物線y2=8x的準線所得的弦長為()

A.4B.2C.2D.

答案:C命題立意:本題考查直線與拋物線及圓的位置關系的應用,難度中等.

解題思路:設直線l的方程為y=-x+b,聯(lián)立直線與拋物線方程,消元得y2+8y-8b=0,因為直線與拋物線相切,故Δ=82-4×(-8b)=0,解得b=-2,故直線l的方程為x+y+2=0,從而A(-2,0),B(0,-2),因此過A,B兩點最小圓即為以AB為直徑的圓,其方程為(x+1)2+(y+1)2=2,而拋物線y2=8x的準線方程為x=-2,此時圓心(-1,-1)到準線的距離為1,故所截弦長為2=2.

3.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()

A.y2=9x B.y2=6x

C.y2=3x D.y2=x

答案:C命題立意:本題考查拋物線定義的應用及拋物線方程的求解,難度中等.

解題思路:如圖,分別過點A,B作拋物線準線的垂線,垂足分別為E,D,由拋物線定義可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,則GF即為ACE的中位線,故|GF|=p==,因此拋物線方程為y2=2px=3x.

4.焦點在x軸上的雙曲線C的左焦點為F,右頂點為A,若線段FA的中垂線與雙曲線C有公共點,則雙曲線C的離心率的取值范圍是()

A.(1,3) B.(1,3]

C.(3,+∞) D.[3,+∞)

答案:D命題立意:本題主要考查雙曲線的離心率問題,考查考生的化歸與轉化能力.

解題思路:設AF的中點C(xC,0),由題意xC≤-a,即≤-a,解得e=≥3,故選D.

5.過點(,0)引直線l與曲線y=相交于A,B兩點,O為坐標原點,當AOB的面積取值時,直線l的搭肆斜率等于()

A. B.- C.± D.-

答案:B命題透析:本題考查直線與圓的位置關系以及數形結合的數學思想.

思路點撥:由y=,得x2+y2=1(y≥0),即該曲線表示圓心在原點,半徑為1的上半圓,如圖所示.

故SAOB=|OA||OB|·sin AOB=sin AOB,所以當sin AOB=1,即OAOB時,SAOB取得值,此時O到直線l的距離d=|OA|sin 45°=.設此時直線l的方程為y=k(x-),即kx-y-k=0,則有=,解得k=±,由圖可知直線l的傾斜角為鈍角,故k=-.

6.點P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2于A,B兩點,且|PA|=|AB|,則稱點P為“正點”,那么下列結論中正知滲轎確的是()

A.直線l上的所有點都是“正點”

B.直線l上僅有有限個點是“正點”

C.直線l上的所有點都不是“正點”

喊或D.直線l上有無窮多個點(點不是所有的點)是“正點”

答案:A解題思路:本題考查直線與拋物線的定義.設A(m,n),P(x,x-1),則B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得關于x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恒成立, 方程恒有實數解.

二、填空題

7.設A,B為雙曲線-=1(b>a>0)上兩點,O為坐標原點.若OAOB,則AOB面積的最小值為________.

答案:解題思路:設直線OA的方程為y=kx,則直線OB的方程為y=-x,則點A(x1,y1)滿足故x=,y=,

|OA|2=x+y=;

同理|OB|2=.

故|OA|2·|OB|2=·=.

=≤(當且僅當k=±1時,取等號), |OA|2·|OB|2≥,

又b>a>0,

故SAOB=|OA|·|OB|的最小值為.

8.已知直線y=x與雙曲線-=1交于A,B兩點,P為雙曲線上不同于A,B的點,當直線PA,PB的斜率kPA,kPB存在時,kPA·kPB=________.

答案:解題思路:設點A(x1,y1),B(x2,y2),P(x0,y0),則由得y2=,y1+y2=0,y1y2=-,

x1+x2=0,x1x2=-4×.

由kPA·kPB=·====知kPA·kPB為定值.

9.設平面區(qū)域D是由雙曲線y2-=1的兩條漸近線和拋物線y2=-8x的準線所圍成的三角形(含邊界與內部).若點(x,y)D,則目標函數z=x+y的值為______.

答案:

3解題思路:本題考查雙曲線、拋物線的性質以及線性規(guī)劃.雙曲線y2-=1的兩條漸近線為y=±x,拋物線y2=-8x的準線為x=2,當直線y=-x+z過點A(2,1)時,zmax=3.

三、解答題

10.已知拋物線y2=4x,過點M(0,2)的直線與拋物線交于A,B兩點,且直線與x軸交于點C.

(1)求證:|MA|,|MC|,|MB|成等比數列;

(2)設=α,=β,試問α+β是否為定值,若是,求出此定值;若不是,請說明理由.

解析:(1)證明:設直線的方程為:y=kx+2(k≠0),

聯(lián)立方程可得得

k2x2+(4k-4)x+4=0.

設A(x1,y1),B(x2,y2),C,

則x1+x2=-,x1x2=,

|MA|·|MB|=|x1-0|·|x2-0|=,

而|MC|2=2=,

|MC|2=|MA|·|MB|≠0,

即|MA|,|MC|,|MB|成等比數列.

(2)由=α,=β,得

(x1,y1-2)=α,

(x2,y2-2)=β,

即得:α=,β=,

則α+β=,

由(1)中代入得α+β=-1,

故α+β為定值且定值為-1.

11.如圖,在平面直角坐標系xOy中,設點F(0,p)(p>0),直線l:y=-p,點P在直線l上移動,R是線段PF與x軸的交點,過R,P分別作直線l1,l2,使l1PF,l2l,l1∩l2=Q.

(1)求動點Q的軌跡C的方程;

(2)在直線l上任取一點M作曲線C的兩條切線,設切點為A,B,求證:直線AB恒過一定點;

(3)對(2)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數成等差數列.

解題思路:本題考查軌跡方程的求法及直線與拋物線的位置關系.(1)利用拋物線的定義即可求出拋物線的標準方程;(2)利用導數及方程根的思想得出兩切點的直線方程,進一步求出直線恒過的定點;(3)分別利用坐標表示三條直線的斜率,從而化簡證明即可.

解析:(1)依題意知,點R是線段PF的中點,且RQ⊥FP,

RQ是線段FP的垂直平分線. |QP|=|QF|.故動點Q的軌跡C是以F為焦點,l為準線的拋物線,其方程為:x2=4py(p>0).

(2)設M(m,-p),兩切點為A(x1,y1),B(x2,y2).

由x2=4py得y=x2,求導得y′=x.

兩條切線方程為y-y1=x1(x-x1),

y-y2=x2(x-x2),

對于方程,代入點M(m,-p)得,

-p-y1=x1(m-x1),又y1=x,

-p-x=x1(m-x1),

整理得x-2mx1-4p2=0.

同理對方程有x-2mx2-4p2=0,

即x1,x2為方程x2-2mx-4p2=0的兩根.

x1+x2=2m,x1x2=-4p2.

設直線AB的斜率為k,k===(x1+x2),

所以直線的方程為y-=(x1+x2)(x-x1),展開得:

y=(x1+x2)x-,

將代入得:y=x+p.

直線恒過定點(0,p).

2017高考數學題及答案

高考數學第一題睜皮一般考的都是關穗悶于集合的問題,這類問題雖然簡單但是也要細心點,別人悉族差容易看錯符號導致出錯。

2016高考數學題

定義域為R的話,一次函數和反比例函數沒有極值。

兩次函數有一個極值。

f(x)=ax^2+bx+c

a>0時,x=-b/2/a時有最小值

a<0時,x=-b/信桐2/a時f(x)有最大值

二次函數的話就要分情況來討論了:

(1)開口向上的時候,在定義域內有最小值;

若是給一個區(qū)間范圍還要看看這個區(qū)間包括頂點和不包括頂點兩個類,包括頂點那么頂點就是函數的最小值,不包括頂點的是后如果區(qū)間在函數對稱軸的右側那么起點的函數值是最小值,如果區(qū)間在函數對稱軸的左側那么終點的函數值是最小值;

(2)開口向下的時候,在定義域內有最大值;

若是給定一個區(qū)間范圍也要嫌坦禪看這個區(qū)間是否包括頂點;如果包括頂點那么頂點的縱坐標就是函數的最大值,如果不包括頂點的且區(qū)間在對稱軸的左側那么終點是函數的最大值,相反起點的函數值是函數的最大值;

============================================================================

親~你好!````(^__^)````

很高興為您解答,祝你學習進步,身體健康,家庭和諧,天天開心!有不明白的可以追問!

如果有其他問題請另芹塵發(fā)或點擊向我求助,答題不易,請諒解.

如果您認可我的回答,請點擊下面的【采納為滿意回答】或者手機提問的朋友在客戶端右上角點擊【評價】,謝謝!

你的好評是我前進的動力!! 你的采納也會給你帶去財富值的。

2017年高考數學全國一卷

不是填空題,就是選擇爛巧老題,而且還是比較簡單的題目!為的是給考生一點兒寬指信心!避免一上來就不會做,影響心情影響正常水平饑升的發(fā)揮!

2017年全國二卷高考數學題

高中數學合集

pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

1234

簡介:高中肢游數學優(yōu)質資料,包括:試題試卷、課羨返件、教兄饑饑材、、各大名師網校合集。

以上就是2017年高考數學第一題的全部內容,如果是答題卡沒有標明題號可以舉手問監(jiān)考老師是不是答題卡有問題,如果是自己沒有選擇題沒有涂卡,那就不會得分。因為現在都是使用電腦閱卷,電腦掃描出來發(fā)現沒有做題,自然不會給分。高考時考生得到試卷(卡)后。

猜你喜歡

主站蜘蛛池模板: 洮南市| 德清县| 石城县| 昌江| 周至县| 冀州市| 长泰县| 军事| 新闻| 滨州市| 黎城县| 肇东市| 公主岭市| 万源市| 临西县| 安龙县| 咸丰县| 临邑县| 武定县| 静安区| 伽师县| 安溪县| 桃江县| 水富县| 吴桥县| 绥宁县| 遵义市| 锡林浩特市| 平定县| 开鲁县| 南皮县| 抚顺县| 龙南县| 沂南县| 龙江县| 鄂托克前旗| 聂拉木县| 什邡市| 平潭县| 剑河县| 广元市|