韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當(dāng)前位置: 首頁 > 高中 > 高考

2017高考陜西數(shù)學(xué)答案,陜西省高考數(shù)學(xué)試卷

  • 高考
  • 2023-07-26

2017高考陜西數(shù)學(xué)答案?答案:B解題思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.當(dāng)x=-1時,f(x)0,得x>或x<-,因此函數(shù)f(x)的單調(diào)遞增區(qū)間為,,即正確.二、那么,2017高考陜西數(shù)學(xué)答案?一起來了解一下吧。

2017年陜西數(shù)學(xué)中考原卷

國慶節(jié)期間,電器市場火爆.某商店需要購進(jìn)睜大一批電視機(jī)和洗衣機(jī),根據(jù)市場調(diào)查,決定電視機(jī)進(jìn)貨量不少于洗衣機(jī)的進(jìn)貨量的一半.電視機(jī)與洗衣機(jī)的進(jìn)價和售價如下表:

類別

電視機(jī)

洗衣機(jī)

進(jìn)價(元/臺)

1 800

1 500

售價(元/臺)

2 000

1 600

計(jì)劃購進(jìn)電視機(jī)和洗衣機(jī)共100臺,商店最多可籌集資金161 800元.

(1)請你幫助商店算一算有多少種進(jìn)貨方案?(不考慮除進(jìn)價之外的其他費(fèi)用)

(2)哪種進(jìn)貨方案待商店銷售購進(jìn)的電視機(jī)與洗衣機(jī)完畢后獲得利潤最多?并求出最多利潤.(利潤=售價-進(jìn)價)

【答案】

(1)6種進(jìn)貨方案 (2)當(dāng)x=39時,商店獲利最多為13 900元.

今秋,某市白玉村基亮水果喜獲豐收,果農(nóng)王燦收獲枇杷20噸,桃子12噸.現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛將這批水果全部運(yùn)往外地銷售,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.

(1)王燦如何安排甲、乙兩種貨車可一次悉鋒豎性地運(yùn)到銷售地?有幾種方案?

(2)若甲種貨車每輛要付運(yùn)輸費(fèi)300元,乙種貨車每輛要付運(yùn)輸費(fèi)240元,則果農(nóng)王燦應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?

【答案】

(1)安排甲、乙兩種貨車有三種方案(2)方案一運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是2 040元

2017數(shù)學(xué)中考題及答案

一、選擇題

1.(哈爾濱質(zhì)檢)設(shè)U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)},則下圖中陰影部分表示的集合為()

A.{x|x≥1} B.{x|1≤x<2}

C.{x|0

答案:B命題立意:本題考查集合的概念、運(yùn)算及韋恩圖知識的綜合應(yīng)用,難度較小.

解題思路:分別化簡兩集合可得A={x|0

易錯點(diǎn)撥:本題要注意集合B表示函數(shù)的定義域,陰影部分可視為集合A,B的交集在集合A下的補(bǔ)集,結(jié)合數(shù)軸解答,注意等號能否取到.

2.已知集合A={0,1},則滿足條件AB={0,1,2,3}的集合B共有()

A.1個 B.2個 C.3個 D.4個

答案:D命題立意:本題考查集合間的運(yùn)算、集合間的關(guān)系,鍵橋難度較小.

解題思路:由題知B集合必須含有元素2,3,可以是{2,3},{0,2,3},{1,2,3},{0,1,2,3},共4個,故選D.

易錯點(diǎn)撥:本題容易忽視集合本身{0,1,2,3}的情況,需要強(qiáng)化集合也是其本身的子集的意識.

3.設(shè)A,B是兩個非空集合,定義運(yùn)算A×B={x|xA∪B且xA∩B}.已知A={x|y=},B={y|y=2x,x>0},則A×B=()

A.[0,1](2,+∞) B.[0,1)[2,+∞)

C.[0,1] D.[0,2]

答案:A命題立意:本題屬于創(chuàng)新型的集合問題,準(zhǔn)確理解運(yùn)算的新定義是解決問題的關(guān)鍵.對于此類新定義的集合問題,求解時要準(zhǔn)確理解新定義的實(shí)質(zhì),緊扣新定義進(jìn)行推理論證,把其轉(zhuǎn)化為我們熟知的基本運(yùn)算.

解題思路:由題意得A={x|2x-x2≥0}={x|0≤x≤遲擾2},B={y|y>1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).

4.已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},則(RP)∩Q=()

A.[2,3] B.(-∞,-1][3,+∞)

C.(2,3] D.(-∞,-1](3,+∞)

答案:C解題思路:因?yàn)镻={x|-1≤x≤2},Q={x|1

5.已知集合M={1,2,3,4,5},N=,則M∩N=()

A.{4,5} B.{1,4,5}

C.{3,4,5} D.{1,3,4,5}

答案:C命題立意:本題考查不等式的解法與交集的意義,難度中等.

解題思路:由≤1得≥0,x<1或x≥3,即N={x|x<1或x≥3},M∩N={3,4,5},故選C.

6.對于數(shù)集A,B,定義A+B={x|x=a+b,aA,bB},A÷B=.若集合A={1,2},則集合(A+A)÷A中所有元素之和為()

A. B.

C. D.

答案:D命題立意:本題考查考生接受新知識的能力與集合間的運(yùn)算,難度中等.

解題思路:依題意得A+A={2,3,4},(A+A)÷A={2,3,4}÷{1,2}=,因此集合(A+A)÷A中所有元素的和等于1++2+3+4=,故選D.

7.已知集合A=kZsin(kπ-θ)=

,B=kZcos(kπ+θ)=cos θ,θ,則(ZA)∩B=()

A.{k|k=2n,nZ} B.{k|k=2n-1,nZ}

C.{k|k=4n,nZ} D.{k|k=4n-1,nZ}

答案:A命題立意:本題考查誘導(dǎo)公式及集合的運(yùn)算,根據(jù)誘導(dǎo)公式對k的奇偶性進(jìn)行討論是解答本題的關(guān)鍵,難度碼亮旦較小.

解題思路:由誘導(dǎo)公式得A={kZ|k=2n+1,nZ},B={kZ|k=2n,nZ},故(ZA)∩B={kZ|k=2n,nZ},故選A.

8.已知M={x||x-1|>x-1},N={x|y=},則M∩N等于()

A.{x|1

C.{x|1≤x≤2} D.{x|x<0}

答案:B解題思路:(解法一)直接法:可解得M={x|x<1},N={x|0≤x≤2},所以M∩N={x|0≤x<1},故選B.

(解法二)排除法:把x=0代入不等式,可以得到0M,0N,則0M∩N,所以排除A,C,D.故選B.

9.(鄭州一次質(zhì)量預(yù)測)已知集合A={2,3},B={x|mx-6=0},若BA,則實(shí)數(shù)m=()

A.3 B.2

C.2或3 D.0或2或3

答案:D命題立意:本題考查了集合的運(yùn)算及子集的概念,體現(xiàn)了分類討論思想的靈活應(yīng)用.

解題思路:當(dāng)m=0時,B=A;當(dāng)m≠0時,由B={2,3},可得=2或=3,解得m=3或m=2.綜上可得,實(shí)數(shù)m=0或2或3,故選D.

二、填空題

10.已知集合A={x||x-1|<2},B={x|log2 x<2},則A∩B=________.

答案:{x|0

解題思路:將兩集合化簡得A={x|-1

11.(四川南充質(zhì)檢)同時滿足M?{1,2,3,4,5};a∈M,則(6-a)M的非空集合M有________個.

答案:7命題立意:本題考查集合中元素的特性,難度中等.

解題思路: 非空集合M{1,2,3,4,5},且若aM,則必有6-aM,那么滿足上述條件的集合M有{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7個.

12.設(shè)集合A=,B={y|y=x2},則A∩B等于______.

答案:{x|0≤x≤2}解題思路: A=={x|-2≤x≤2},B={y|y=x2}={y|y≥0}, A∩B={x|0≤x≤2}.

13.設(shè)A是整數(shù)集的一個非空子集,對于kA,如果k-1A且k+1A,那么稱k是集合A的一個“好元素”.給定集合S={1,2,3,4,5,6,7,8},由S的3個元素構(gòu)成的所有集合中,不含“好元素”的集合共有________個.

答案:6命題立意:本題主要考查集合的新定義,正確理解新定義,得出構(gòu)成的不含“好元素”的集合均為3個元素緊鄰的集合,是解決本題的關(guān)鍵.

解題思路:依題意可知,若由S的3個元素構(gòu)成的集合不含“好元素”,則這3個元素一定是緊鄰的3個數(shù),故這樣的集合共有6個.

14.已知集合A=,B={(x,y)|x2+(y-1)2≤m},若AB,則m的取值范圍是________.

答案:[2,+∞)命題立意:本題主要考查線性規(guī)劃知識,意在綜合考查圓的方程、點(diǎn)和圓的位置關(guān)系以及數(shù)形結(jié)合思想.

解題思路:作出可行域,如圖中陰影部分所示,三個頂點(diǎn)到圓心(0,1)的距離分別是1,1,,由AB得三角形所有點(diǎn)都在圓的內(nèi)部,故≥,解得m≥2.

15.已知R是實(shí)數(shù)集,集合A={y|y=x2-2x+2,xR,-1≤x≤2},集合B=,任取xA,則xA∩B的概率等于________.

答案:命題立意:本題主要考查函數(shù)的圖象與性質(zhì)、不等式的解法、幾何概型的意義等基礎(chǔ)知識,意在考查考生的運(yùn)算能力.

解題思路:依題意得,函數(shù)y=x2-2x+2=(x-1)2+1.當(dāng)-1≤x≤2時,函數(shù)的值域是[1,5],即A=[1,5];由>1得>0,x4,即B=(-∞,3)(4,+∞),A∩B=[1,3)(4,5],因此所求的概率等于=.

16.已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)M,存在(x2,y2)M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點(diǎn)集”.給出下列四個集合:

M=; M={(x,y)|y=ex-2};

M={(x,y)|y=cos x}; M={(x,y)|y=ln x}.

其中是“垂直對點(diǎn)集”的序號是________.

答案:解題思路:對于,注意到x1x2+=0無實(shí)數(shù)解,因此不是“垂直對點(diǎn)集”;對于,注意到過原點(diǎn)任意作一條直線與曲線y=ex-2相交,過原點(diǎn)與該直線垂直的直線必與曲線y=ex-2相交,因此是“垂直對點(diǎn)集”;對于,與同理;對于,注意到對于點(diǎn)(1,0),不存在(x2,y2)M,使得1×x2+0×ln x2=0,因?yàn)閤2=0與x2>0矛盾,因此不是“垂直對點(diǎn)集”.綜上所述,故填.

B組

一、選擇題

1.命題:x,yR,若xy=0,則x=0或y=0的逆否命題是()

A.x,yR,若x≠0或y≠0,則xy≠0

B.x,yR,若x≠0且y≠0,則xy≠0

C.x,yR,若x≠0或y≠0,則xy≠0

D.x,yR,若x≠0且y≠0,則xy≠0

答案:D命題立意:本題考查命題的四種形式,屬于對基本概念層面的考查,難度較小.

解題思路:對于原命題:如果p,則q,將條件和結(jié)論既“換質(zhì)”又“換位”得如果非q,則非p,這稱為原命題的逆否命題.據(jù)此可得原命題的逆否命題為D選項(xiàng).

易錯點(diǎn)撥:本題有兩處高頻易錯點(diǎn),一是易錯選B,忽視了“x,yR”是公共的前提條件;二是錯選C,錯因是沒有將邏輯聯(lián)結(jié)詞“或”進(jìn)行否定改為“且”.

2.已知命題p:“直線l平面α內(nèi)的無數(shù)條直線”的充要條件是“l(fā)α”;命題q:若平面α平面β,直線aβ,則“aα”是“aβ”的充分不必要條件.則真命題是()

A.pq B.p綈q

C.綈p綈q D.綈pq

答案:D解題思路:由題意可知,p為假命題,q為真命題,因此綈pq為真命題,故選D.

3.已知命題p:若(x-1)(x-2)≠0,則x≠1且x≠2;命題q:存在實(shí)數(shù)x0,使2x0<0.下列選項(xiàng)中為真命題的是()

A.綈p B.q

C.綈pq D.綈qp

答案:D命題立意:本題考查復(fù)合命題的真假性判定規(guī)則,難度中等.

解題思路:依題意,命題p是真命題,命題q是假命題,因此綈p是假命題,綈qp是真命題,綈pq是假命題,故選D.

4.已知命題p1:函數(shù)y=x--x在R上為減函數(shù);p2:函數(shù)y=x+-x在R上為增函數(shù).在命題q1:p1p2,q2:p1p2,q3:(綈p1)p2和q4:p1(綈p2)中,真命題是()

A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4

答案:C命題立意:本題考查含有邏輯聯(lián)結(jié)詞的命題的真假,難度中等.

解題思路:先判斷命題p1,p2的真假,再判斷復(fù)合命題的真假.因?yàn)楹瘮?shù)y=x-2x是R上的減函數(shù),所以命題p1是真命題;因?yàn)閤=1和x=-1時,都有y=+2=,所以函數(shù)y=x+2x不是R上的增函數(shù),故p2是假命題,所以p1p2是真命題,p1p2是假命題,(綈p1)p2是假命題,p1(綈p2)是真命題,所以真命題是q1,q4,故選C.

5.下列有關(guān)命題的說法正確的是()

A.命題“若x=y,則sin x=sin y”的逆否命題為真命題

B.函數(shù)f(x)=tan x的定義域?yàn)閧x|x≠kπ,kZ}

C.命題“x∈R,使得x2+5x+1>0”的否定是:“x∈R,均有x2+5x+1<0”

D.“a=2”是“直線y=-ax+2與y=x-1垂直”的必要不充分條件

答案:A命題立意:本題考查常用邏輯用語的有關(guān)知識,難度較小.

解題思路:A正確,因?yàn)樵}為真,故其等價命題逆否命題為真;B錯誤,定義域應(yīng)為;C錯誤,否定是:x∈R,均有x2+x+1≥0;D錯誤,因?yàn)閮芍本€垂直充要條件為(-a)×=-1a=±2,故“a=2”是“直線y=-ax+2與y=x-1垂直”的充分不必要條件,故選A.

6.在四邊形ABCD中,“λ∈R,使得=λ,=λ”是“四邊形ABCD為平行四邊形”的()

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

答案:C命題立意:本題考查向量共線與充要條件的意義,難度中等.

解題思路:由λ∈R,使得=λ,=λ得ABCD,ADBC,四邊形ABCD為平行四邊形;反過來,由四邊形ABCD為平行四邊形得=1·,=1·.因此,在四邊形ABCD中,“λ∈R,使得=λ,=λ”是“四邊形ABCD為平行四邊形”的充要條件,故選C.

7.下列說法錯誤的是()

A.命題“若x2-4x+3=0,則x=3”的逆否命題是“若x≠3,則x2-4x+3≠0”

B.“x>1”是“|x|>0”的充分不必要條件

C.若pq為假命題,則p,q均為假命題

D.命題p:“x∈R,使得x2+x+1<0”,則綈p:“x∈R,使得x2+x+1≥0”

答案:C命題立意:本題主要考查常用邏輯用語的相關(guān)知識,考查考生分析問題、解決問題的能力.

解題思路:根據(jù)逆命題的構(gòu)成,選項(xiàng)A中的說法正確;x>1一定可得|x|>0,但反之不成立,故選項(xiàng)B中的說法正確;且命題只要p,q中一個為假即為假命題,故選C中的說法不正確;特稱命題的否定是全稱命題,選項(xiàng)D中的說法正確.

8.下列說法中不正確的個數(shù)是()

命題“x∈R,x3-x2+1≤0”的否定是“x0∈R,x-x+1>0”;

若“pq”為假命題,則p,q均為假命題;

“三個數(shù)a,b,c成等比數(shù)列”是“b=”的既不充分也不必要條件.

A.0 B.1 C.2 D.3

答案:B命題立意:本題主要考查簡易邏輯知識,難度較小.

解題思路:對于,全稱命題的否定是特稱命題,故正確;對于,若pq為假,則p,q中至少有一個為假,不需要均為假,故不正確;對于,若a,b,c成等比數(shù)列,則b2=ac,當(dāng)b<0時,b=-;若b=,有可能a=0,b=0,c=0,則a,b,c不成等比數(shù)列,故正確.綜上,故選B.

知識拓展:在判定命題真假時,可以試圖尋找反例,若能找到反例,則命題為假.

9.已知f(x)=3sin x-πx,命題p:x∈,f(x)<0,則()

A.p是真命題,綈p:x∈,f(x)>0

B.p是真命題,綈p:x0∈,f(x0)≥0

C.p是假命題,綈p:x∈,f(x)≥0

D.p是假命題,綈p:x0∈,f(x0)≥0

答案:B命題立意:本題主要考查函數(shù)的性質(zhì)與命題的否定的意義等基礎(chǔ)知識,意在考查考生的運(yùn)算求解能力.

解題思路:依題意得,當(dāng)x時,f′(x)=3cos x-π<3-π<0,函數(shù)f(x)是減函數(shù),此時f(x)

10.若實(shí)數(shù)a,b滿足a≥0,b≥0,且ab=0,則稱a與b互補(bǔ).記φ(a,b)=-a-b,那么φ(a,b)=0是a與b互補(bǔ)的()

A.必要而不充分的條件 B.充分而不必要的條件

C.充要條件 D.既不充分也不必要的條件

答案:C解題思路:φ(a,b)=0,即=a+b,又a≥0,b≥0,所以a2+b2=(a+b)2,得ab=0;反之當(dāng)ab=0時,必有φ(a,b)=-a-b=0,所以φ(a,b)=0是a與b互補(bǔ)的充要條件,故選C.

二、填空題

11.命題p:x∈R,使3cos2+sin cos

答案:(-,1]解題思路:3cos2+sin cos =+sin x=++sin x=+=+sin,故命題p正確的條件是+a>-,即a>-.

對于命題q,因?yàn)閤>0,故不等式等價于a≤,因?yàn)閤+≥2當(dāng)且僅當(dāng)x=,即x=1時取等號,所以不等式成立的條件是a≤1.

綜上,命題pq為真,即p真q真時,a的取值范圍是(-,1].

12.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S3>S2”的________條件.

答案:充要命題立意:本題考查了等比數(shù)列的公式應(yīng)用及充要條件的判斷,難度中等.

解題思路:若a1>0,則a3=a1q2>0,故有S3>S2.若S3>S2,則a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要條件.

13.已知c>0,且c≠1.設(shè)命題p:函數(shù)f(x)=logc x為減函數(shù);命題q:當(dāng)x時,函數(shù)g(x)=x+>恒成立.如果p或q為真命題,p且q為假命題,則實(shí)數(shù)c的取值范圍為________.

答案:(1,+∞)命題立意:本題主要考查命題真假的判斷,在解答本題的過程中,要考慮有p真q假或p假q真兩種情況.

解題思路:由f(x)=logc x為減函數(shù)得0恒成立,得2>,解得c>.如果p真q假,則01,所以實(shí)數(shù)c的取值范圍為.

14.給出下列四個結(jié)論:

命題“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;

函數(shù)f(x)=x-sin x(xR)有3個零點(diǎn);

對于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則xg′(x).

其中正確結(jié)論的序號是________.(請寫出所有正確結(jié)論的序號)

答案:解題思路:顯然正確;由y=x與y=sin x的圖象可知,函數(shù)f(x)=x-sin x(xR)有1個零點(diǎn),不正確;對于,由題設(shè)知f(x)為奇函數(shù),g(x)為偶函數(shù),又奇函數(shù)在對稱區(qū)間上單調(diào)性相同,偶函數(shù)在對稱區(qū)間上單調(diào)性相反, 當(dāng)x0,g′(x)<0,

f′(x)>g′(x),正確.

15.(北京海淀測試)給出下列命題:

“α=β”是“tan α=tan β”的既不充分也不必要條件;

“p為真”是“p且q為真”的必要不充分條件;

“數(shù)列{an}為等比數(shù)列”是“數(shù)列{anan+1}為等比數(shù)列”的充分不必要條件;

“a=2”是“f(x)=|x-a|在[2,+∞)上為增函數(shù)”的充要條件.

其中真命題的序號是________.

答案:命題立意:本題考查充分條件、必要條件的判斷,難度中等.

解題思路:對于,當(dāng)α=β=時,不能推出tan α=tan β,反之也不成立,故成立;對于,易得“p為真”是“p且q為真”的必要不充分條件,故成立;對于,當(dāng)數(shù)列{anan+1}是等比數(shù)列時不能得出數(shù)列{an}為等比數(shù)列,故成立;對于,“a=2”是“f(x)=|x-a|在[2,+∞)上為增函數(shù)”的充分不必要條件,故不成立.

2016年陜西省數(shù)學(xué)中考

17.(12分)

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長

18.(12分)

如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).

(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;學(xué)科&網(wǎng)

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ–3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得,,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.

用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).

附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ

20.(12分)

已知橢圓C:x2/a2+y2/b2=1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)爛啟且與C相交于A,拿世B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

21.(12分)

已知函數(shù)=ae2^x+(a﹣2)e^x﹣x.

(1)討論的單調(diào)性;

(2)若有兩個零點(diǎn),求a的取值范圍.

(二)選消歷肢考題:共10分。

2019年中考陜西卷數(shù)學(xué)及答案

你答案錯了。

|3cosa+4sina-a-4|max=17,則 -17=<3cosa+4sina-a-4<=17, 所以當(dāng)取最大值17時, 3cosa+4sina應(yīng)取最大值5, 5-a-4=17, 得慶胡源a=-16, 但此時我們不知道3cosa+4sina-a-4 最小值是否會小于-17,代入可知,3cosa+4sina-a-4在a=-16 時的譽(yù)態(tài)最小值為7.符合題意。同理取最小值-17時,3cosa+4sina應(yīng)取最小值 -5,-5-a-4=-17,做大得a=8. 此時最大值為-7。符合題意。 所以a為8 或 -16.

18和-26 是由于沒有考慮絕對值內(nèi)取得最大(小)值時,參數(shù)值也應(yīng)該相對應(yīng)的去最大(小)值。將18,和-26,代入即可得到絕對值的最大值是27.而非17。

2017陜西中考數(shù)學(xué)真題

一、選擇題

1.已知函數(shù)f(x)=2x3-x2+m的圖象上A點(diǎn)處的切線與直線x-y+3=0的夾角為45°,則A點(diǎn)的橫坐標(biāo)為()

A.0 B.1 C.0或 D.1或

答案:C命題立意:本題考查導(dǎo)數(shù)的應(yīng)用,難度中等.

解題思路:直線x-y+3=0的傾斜角為45°,

切線的傾斜角為0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故選C.

易錯點(diǎn)撥:常見函數(shù)的切線的斜率都是存在的,所以傾斜角不會是90°.

2.設(shè)函數(shù)f(x)=則滿足f(x)≤2的x的取值范圍是()

A.[-1,2] B.[0,2]

C.[1,+∞) D.[0,+∞)

答案:D命題立意:本題考查分段函數(shù)的相關(guān)知識,求解時可分為x≤1和x>1兩種情況進(jìn)行求解,再對所求結(jié)果求并集即得最終結(jié)果.

解題思路:若x≤1,則21-x≤2,解得0≤x≤1;若x>1,則1-log2 x≤2,解得x>1,綜上可知,x≥0.故選D.

3.函數(shù)y=x-2sin x,x的大致圖象是()

答案:D解析思路:因?yàn)楹瘮?shù)為奇函數(shù),所以圖象關(guān)于原點(diǎn)對稱,排除A,B.函數(shù)的導(dǎo)數(shù)為f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.當(dāng)00,函數(shù)單調(diào)遞增,所以當(dāng)x=時,函數(shù)取得極小值.故選D.

4.已知函數(shù)f(x)滿足豎宏:當(dāng)x≥4時,f(x)=2x;當(dāng)x<4時,f(x)=f(x+1),則f=()

A. B. C.12 D.24

答案:D命題立意:本題考查指數(shù)式的運(yùn)算,難度中等.

解題思路:利用指數(shù)式的運(yùn)算法則求解.因?yàn)?+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.

5.已知函數(shù)f(x)=若關(guān)于x的方程f2(x)-af(x)=0恰好有5個不同的實(shí)數(shù)解,則a的取值范圍是()

A.(0,1) B.(0,2) C.(1,2) D.(0,3)

答案:

A解題思路:設(shè)t=f(x),則方程為t2-at=0,解得t=0或t=a,

即f(x)=0或衡伍f(x)=a.

如圖,作出函數(shù)的圖象,

由函數(shù)圖象可知,f(x)=0的解有兩個,

故要使方程f2(x)-af(x)=0恰有5個不同的解,則方程f(x)=a的解必有三個,此時0

6.若R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,且當(dāng)0

A.4 020 B.4 022 C.4 024 D.4 026

答案:B命題立意:本題考查函數(shù)性質(zhì)的應(yīng)用及數(shù)形結(jié)合思想,考查推理與轉(zhuǎn)化能力,難度中等.

解題思路:由于函數(shù)圖象關(guān)于直線x=1對稱,故有f(-x)=f(2+x),又函數(shù)為奇函數(shù),故-f(x)=f(2+x),從而得-f(x+2)=f(x+4)=f(x),即函數(shù)以4為周期,據(jù)題意其在一個周期內(nèi)的圖象如圖所示.

又函數(shù)為定義在R上的奇函數(shù),故f(0)=0,因此f(x)=+f(0)=,因此在區(qū)間(2 010,2 012)內(nèi)的函數(shù)圖象可由區(qū)間(-2,0)內(nèi)的圖象向右平移2 012個單位得到,此時兩根關(guān)于直線x=2 011對稱,故x1+x2=4 022.

7.已知函數(shù)滿足f(x)=2f,當(dāng)x[1,3]時,f(x)=ln x,若在區(qū)間內(nèi),函數(shù)g(x)=f(x)-ax有三個不同零點(diǎn),則實(shí)數(shù)a的取值范圍是()

A. B.

C. D.

答案:A思路點(diǎn)撥:當(dāng)x∈時,則1<≤3,

f(x)=2f=2ln=-2ln x.

f(x)=

g(x)=f(x)-ax在區(qū)間內(nèi)有三個不同零點(diǎn),即函數(shù)y=與y=a的圖象在上有三個不同的交點(diǎn).

當(dāng)x∈時,y=-,

y′=<0,

y=-在上遞減,

y∈(0,6ln 3).

當(dāng)x[1,3]時,y=,

y′=,

y=在[1,e]上遞增,在[e,3]上遞減.

結(jié)合圖象,所以y=與y=a的圖象有三個交點(diǎn)時,a的取值范圍為.

8.若函數(shù)f(x)=loga有最小值,則實(shí)數(shù)a的取值余攔冊范圍是()

A.(0,1) B.(0,1)(1,)

C.(1,) D.[,+∞)

答案:C解題思路:設(shè)t=x2-ax+,由二次函數(shù)的性質(zhì)可知,t有最小值t=-a×+=-,根據(jù)題意,f(x)有最小值,故必有解得1

9.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有三個不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為()

A. B.

C. D.

答案:

C命題立意:本題考查函數(shù)與方程以及數(shù)形結(jié)合思想的應(yīng)用,難度中等.

解題思路:由g(x)=f(x)-m=0得f(x)=m,作出函數(shù)y=f(x)的圖象,當(dāng)x>0時,f(x)=x2-x=2-≥-,所以要使函數(shù)g(x)=f(x)-m有三個不同的零點(diǎn),只需直線y=m與函數(shù)y=f(x)的圖象有三個交點(diǎn)即可,如圖.只需-

10.在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對任意給定的a,bR,a*b為確定的實(shí)數(shù),且具有性質(zhì):

(1)對任意a,bR,a*b=b*a;

(2)對任意aR,a*0=a;

(3)對任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.

關(guān)于函數(shù)f(x)=(3x)*的性質(zhì),有如下說法:函數(shù)f(x)的最小值為3;函數(shù)f(x)為奇函數(shù);函數(shù)f(x)的單調(diào)遞增區(qū)間為,.其中所有正確說法的個數(shù)為()

A.0 B.1 C.2 D.3

答案:B解題思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.

當(dāng)x=-1時,f(x)0,得x>或x<-,因此函數(shù)f(x)的單調(diào)遞增區(qū)間為,,即正確.

二、填空題

11.已知f(x)=若f[f(0)]=4a,則實(shí)數(shù)a=________.

答案:2命題立意:本題考查了分段函數(shù)及復(fù)合函數(shù)的相關(guān)知識,對復(fù)合函數(shù)求解時,要從內(nèi)到外逐步運(yùn)算求解.

解題思路:因?yàn)閒(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.

12.設(shè)f(x)是定義在R上的奇函數(shù),在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,則不等式xf(2x)<0的解集為________.

答案:(-1,0)(0,1)命題立意:本題考查函數(shù)的奇偶性與單調(diào)性的應(yīng)用,難度中等.

解題思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函數(shù)F(x)=xf(2x)在區(qū)間(-∞,0)上為減函數(shù),又由f(x)為奇函數(shù)可得F(x)=xf(2x)為偶函數(shù),且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,當(dāng)x0時,不等式解集為(0,1),故原不等式解集為(-1,0)(0,1).

13.函數(shù)f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零點(diǎn)之和為________.

答案:6命題立意:本題考查數(shù)形結(jié)合及函數(shù)與方程思想的應(yīng)用,充分利用已知函數(shù)的對稱性是解答本題的關(guān)鍵,難度中等.

解題思路:由于函數(shù)f(x)=|x-1|+2cos πx的零點(diǎn)等價于函數(shù)g(x)=-|x-1|,h(x)=2cos πx的圖象在區(qū)間[-2,4]內(nèi)交點(diǎn)的橫坐標(biāo).由于兩函數(shù)圖象均關(guān)于直線x=1對稱,且函數(shù)h(x)=2cos πx的周期為2,結(jié)合圖象可知兩函數(shù)圖象在一個周期內(nèi)有2個交點(diǎn)且關(guān)于直線x=1對稱,故其在三個周期[-2,4]內(nèi)所有零點(diǎn)之和為3×2=6.

14.已知函數(shù)f(x)=ln ,若f(a)+f(b)=0,且0

答案:命題立意:本題主要考查對數(shù)函數(shù)的運(yùn)算,函數(shù)的值域,考查運(yùn)算求解能力,難度中等.

解題思路:由題意可知,ln +ln =0,

即ln=0,從而×=1,

化簡得a+b=1,

故ab=a(1-a)=-a2+a=-2+,

又0

故0<-2+<.

B組

一、選擇題

1.已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞減,則滿足不等式f(2x-1)>f成立的x取值范圍是()

A. B.

C. D.

答案:B解析思路:因?yàn)榕己瘮?shù)的圖象關(guān)于y軸對稱,在區(qū)間[0,+∞)單調(diào)遞減,所以f(x)在(-∞,0]上單調(diào)遞增,若f(2x-1)>f,則-<2x-1<,

以上就是2017高考陜西數(shù)學(xué)答案的全部內(nèi)容,7.設(shè)A,B為雙曲線-=1(b>a>0)上兩點(diǎn),O為坐標(biāo)原點(diǎn).若OAOB,則AOB面積的最小值為___.答案:解題思路:設(shè)直線OA的方程為y=kx,則直線OB的方程為y=-x,則點(diǎn)A(x1,y1)滿足故x=,y=。

猜你喜歡

主站蜘蛛池模板: 深泽县| 刚察县| 八宿县| 兴海县| 鹿邑县| 黑龙江省| 红原县| 进贤县| 松原市| 浏阳市| 张北县| 汶川县| 天门市| 睢宁县| 延寿县| 鄂托克前旗| 大连市| 淅川县| 郑州市| 军事| 吉木乃县| 徐州市| 奈曼旗| 宽甸| 海阳市| 鹤壁市| 方正县| 宾阳县| 连城县| 呼图壁县| 杭州市| 兰溪市| 东城区| 扬州市| 舟山市| 黄平县| 永善县| 惠州市| 青神县| 黄石市| 九龙坡区|