韩国美女久久,久久久国际精品,激情小说亚洲图片,国产精品多人

當(dāng)前位置: 首頁 > 高中 > 高考

數(shù)學(xué)高考試題2017,2017年全國高考一卷數(shù)學(xué)

  • 高考
  • 2023-07-23

數(shù)學(xué)高考試題2017?ks5u2017年普通高等學(xué)校招生全國統(tǒng)一考試(全國卷3)理科數(shù)學(xué)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,那么,數(shù)學(xué)高考試題2017?一起來了解一下吧。

數(shù)學(xué)高考大題

一、選擇題

1.已知拋物線y2=2px(p>0)的焦點為F,點P1(x1,y1),P2(x2,y2),P3(x3,y3)在拋物線上,且2x2=x1+x3,則有()

A.|FP1|+|FP2|=|FP3|

B.|FP1|2+|FP2|2=|FP3|2

C.2|FP2|=|FP1|+|FP3|

D.|FP2|2=|FP1|·|FP3|

答案:C解題思路:拋物線的準(zhǔn)線方程為x=-,由定義得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,則|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故選C.

2.與拋物線y2=8x相切傾斜角為135°的直線l與x軸和y軸的交點分別是A和B,那么過A,B兩點的最小圓截拋物線y2=8x的準(zhǔn)線所得的弦長為()

A.4B.2C.2D.

答案:C命題立意:本題考查直線與拋物線及圓的位置關(guān)系的應(yīng)用,難度中等.

解題思路:設(shè)直線l的方程為y=-x+b,聯(lián)立直線與拋物線方程,消元得y2+8y-8b=0,因為直線與拋物線相切,故Δ=82-4×(-8b)=0,解得b=-2,故直線l的方程為x+y+2=0,從而A(-2,0),B(0,-2),因此過A,B兩點最小圓即為以AB為直徑的圓,其方程為(x+1)2+(y+1)2=2,而拋物線y2=8x的準(zhǔn)線方程為x=-2,此時圓心(-1,-1)到準(zhǔn)線的距離為1,故所截弦長為2=2.

3.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()

A.y2=9x B.y2=6x

C.y2=3x D.y2=x

答案:C命題立意:本題考查拋物線定義的應(yīng)用及拋物線方程的求解,難度中等.

解題思路:如圖,分別過點A,B作拋物線準(zhǔn)線的垂線,垂足分別為E,D,由拋物線定義可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,則GF即為ACE的中位線,故|GF|=p==,因此拋物線方程為y2=2px=3x.

4.焦點在x軸上的雙曲線C的左焦點為F,右頂點為A,若線段FA的中垂線與雙曲線C有公共點,則雙曲線C的離心率的取值范圍是()

A.(1,3) B.(1,3]

C.(3,+∞) D.[3,+∞)

答案:D命題立意:本題主要考查雙曲線的離心率問題,考查考生的化歸與轉(zhuǎn)化能力.

解題思路:設(shè)AF的中點C(xC,0),由題意xC≤-a,即≤-a,解得e=≥3,故選D.

5.過點(,0)引直線l與曲線y=相交于A,B兩點,O為坐標(biāo)原點,當(dāng)AOB的面積取值時,直線l的搭肆斜率等于()

A. B.- C.± D.-

答案:B命題透析:本題考查直線與圓的位置關(guān)系以及數(shù)形結(jié)合的數(shù)學(xué)思想.

思路點撥:由y=,得x2+y2=1(y≥0),即該曲線表示圓心在原點,半徑為1的上半圓,如圖所示.

故SAOB=|OA||OB|·sin AOB=sin AOB,所以當(dāng)sin AOB=1,即OAOB時,SAOB取得值,此時O到直線l的距離d=|OA|sin 45°=.設(shè)此時直線l的方程為y=k(x-),即kx-y-k=0,則有=,解得k=±,由圖可知直線l的傾斜角為鈍角,故k=-.

6.點P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2于A,B兩點,且|PA|=|AB|,則稱點P為“正點”,那么下列結(jié)論中正知滲轎確的是()

A.直線l上的所有點都是“正點”

B.直線l上僅有有限個點是“正點”

C.直線l上的所有點都不是“正點”

喊或D.直線l上有無窮多個點(點不是所有的點)是“正點”

答案:A解題思路:本題考查直線與拋物線的定義.設(shè)A(m,n),P(x,x-1),則B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得關(guān)于x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恒成立, 方程恒有實數(shù)解.

二、填空題

7.設(shè)A,B為雙曲線-=1(b>a>0)上兩點,O為坐標(biāo)原點.若OAOB,則AOB面積的最小值為________.

答案:解題思路:設(shè)直線OA的方程為y=kx,則直線OB的方程為y=-x,則點A(x1,y1)滿足故x=,y=,

|OA|2=x+y=;

同理|OB|2=.

故|OA|2·|OB|2=·=.

=≤(當(dāng)且僅當(dāng)k=±1時,取等號), |OA|2·|OB|2≥,

又b>a>0,

故SAOB=|OA|·|OB|的最小值為.

8.已知直線y=x與雙曲線-=1交于A,B兩點,P為雙曲線上不同于A,B的點,當(dāng)直線PA,PB的斜率kPA,kPB存在時,kPA·kPB=________.

答案:解題思路:設(shè)點A(x1,y1),B(x2,y2),P(x0,y0),則由得y2=,y1+y2=0,y1y2=-,

x1+x2=0,x1x2=-4×.

由kPA·kPB=·====知kPA·kPB為定值.

9.設(shè)平面區(qū)域D是由雙曲線y2-=1的兩條漸近線和拋物線y2=-8x的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(x,y)D,則目標(biāo)函數(shù)z=x+y的值為______.

答案:

3解題思路:本題考查雙曲線、拋物線的性質(zhì)以及線性規(guī)劃.雙曲線y2-=1的兩條漸近線為y=±x,拋物線y2=-8x的準(zhǔn)線為x=2,當(dāng)直線y=-x+z過點A(2,1)時,zmax=3.

三、解答題

10.已知拋物線y2=4x,過點M(0,2)的直線與拋物線交于A,B兩點,且直線與x軸交于點C.

(1)求證:|MA|,|MC|,|MB|成等比數(shù)列;

(2)設(shè)=α,=β,試問α+β是否為定值,若是,求出此定值;若不是,請說明理由.

解析:(1)證明:設(shè)直線的方程為:y=kx+2(k≠0),

聯(lián)立方程可得得

k2x2+(4k-4)x+4=0.

設(shè)A(x1,y1),B(x2,y2),C,

則x1+x2=-,x1x2=,

|MA|·|MB|=|x1-0|·|x2-0|=,

而|MC|2=2=,

|MC|2=|MA|·|MB|≠0,

即|MA|,|MC|,|MB|成等比數(shù)列.

(2)由=α,=β,得

(x1,y1-2)=α,

(x2,y2-2)=β,

即得:α=,β=,

則α+β=,

由(1)中代入得α+β=-1,

故α+β為定值且定值為-1.

11.如圖,在平面直角坐標(biāo)系xOy中,設(shè)點F(0,p)(p>0),直線l:y=-p,點P在直線l上移動,R是線段PF與x軸的交點,過R,P分別作直線l1,l2,使l1PF,l2l,l1∩l2=Q.

(1)求動點Q的軌跡C的方程;

(2)在直線l上任取一點M作曲線C的兩條切線,設(shè)切點為A,B,求證:直線AB恒過一定點;

(3)對(2)求證:當(dāng)直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

解題思路:本題考查軌跡方程的求法及直線與拋物線的位置關(guān)系.(1)利用拋物線的定義即可求出拋物線的標(biāo)準(zhǔn)方程;(2)利用導(dǎo)數(shù)及方程根的思想得出兩切點的直線方程,進(jìn)一步求出直線恒過的定點;(3)分別利用坐標(biāo)表示三條直線的斜率,從而化簡證明即可.

解析:(1)依題意知,點R是線段PF的中點,且RQ⊥FP,

RQ是線段FP的垂直平分線. |QP|=|QF|.故動點Q的軌跡C是以F為焦點,l為準(zhǔn)線的拋物線,其方程為:x2=4py(p>0).

(2)設(shè)M(m,-p),兩切點為A(x1,y1),B(x2,y2).

由x2=4py得y=x2,求導(dǎo)得y′=x.

兩條切線方程為y-y1=x1(x-x1),

y-y2=x2(x-x2),

對于方程,代入點M(m,-p)得,

-p-y1=x1(m-x1),又y1=x,

-p-x=x1(m-x1),

整理得x-2mx1-4p2=0.

同理對方程有x-2mx2-4p2=0,

即x1,x2為方程x2-2mx-4p2=0的兩根.

x1+x2=2m,x1x2=-4p2.

設(shè)直線AB的斜率為k,k===(x1+x2),

所以直線的方程為y-=(x1+x2)(x-x1),展開得:

y=(x1+x2)x-,

將代入得:y=x+p.

直線恒過定點(0,p).

2017年數(shù)學(xué)高考題全國一卷

高中數(shù)學(xué)合集

pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

1234

簡介:高中肢游數(shù)學(xué)優(yōu)質(zhì)資料,包括:試題試卷、課羨返件、教兄饑饑材、、各大名師網(wǎng)校合集。

2017年高考數(shù)學(xué)真題

一、選擇題

1.已知函數(shù)f(x)=2x3-x2+m的圖象上A點處的切線與直線x-y+3=0的夾角為45°,則A點的橫坐標(biāo)為()

A.0 B.1 C.0或 D.1或

答案:C命題立意:本題考查導(dǎo)數(shù)的應(yīng)用,難度中等.

解題思路:直線x-y+3=0的傾斜角為45°,

切線的傾斜角為0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故選C.

易錯點撥:常見函數(shù)的切線的斜率都是存在的,所以傾斜角不會是90°.

2.設(shè)函數(shù)f(x)=則滿足f(x)≤2的x的取值范圍是()

A.[-1,2] B.[0,2]

C.[1,+∞) D.[0,+∞)

答案:D命題立意:本題考查分段函數(shù)的相關(guān)知識,求解時可分為x≤1和x>1兩種情況進(jìn)行求解,再對所求結(jié)果求并集即得最終結(jié)果.

解題思路:若x≤1,則21-x≤2,解得0≤x≤1;若x>1,則1-log2 x≤2,解得x>1,綜上可知,x≥0.故選D.

3.函數(shù)y=x-2sin x,x的大致圖象是()

答案:D解析思路:因為函數(shù)為奇函數(shù),所以圖象關(guān)于原點對稱,排除A,B.函數(shù)的導(dǎo)數(shù)為f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.當(dāng)00,函數(shù)單調(diào)遞增,所以當(dāng)x=時,函數(shù)取得極小值.故選D.

4.已知函數(shù)f(x)滿足豎宏:當(dāng)x≥4時,f(x)=2x;當(dāng)x<4時,f(x)=f(x+1),則f=()

A. B. C.12 D.24

答案:D命題立意:本題考查指數(shù)式的運算,難度中等.

解題思路:利用指數(shù)式的運算法則求解.因為2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.

5.已知函數(shù)f(x)=若關(guān)于x的方程f2(x)-af(x)=0恰好有5個不同的實數(shù)解,則a的取值范圍是()

A.(0,1) B.(0,2) C.(1,2) D.(0,3)

答案:

A解題思路:設(shè)t=f(x),則方程為t2-at=0,解得t=0或t=a,

即f(x)=0或衡伍f(x)=a.

如圖,作出函數(shù)的圖象,

由函數(shù)圖象可知,f(x)=0的解有兩個,

故要使方程f2(x)-af(x)=0恰有5個不同的解,則方程f(x)=a的解必有三個,此時0

6.若R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,且當(dāng)0

A.4 020 B.4 022 C.4 024 D.4 026

答案:B命題立意:本題考查函數(shù)性質(zhì)的應(yīng)用及數(shù)形結(jié)合思想,考查推理與轉(zhuǎn)化能力,難度中等.

解題思路:由于函數(shù)圖象關(guān)于直線x=1對稱,故有f(-x)=f(2+x),又函數(shù)為奇函數(shù),故-f(x)=f(2+x),從而得-f(x+2)=f(x+4)=f(x),即函數(shù)以4為周期,據(jù)題意其在一個周期內(nèi)的圖象如圖所示.

又函數(shù)為定義在R上的奇函數(shù),故f(0)=0,因此f(x)=+f(0)=,因此在區(qū)間(2 010,2 012)內(nèi)的函數(shù)圖象可由區(qū)間(-2,0)內(nèi)的圖象向右平移2 012個單位得到,此時兩根關(guān)于直線x=2 011對稱,故x1+x2=4 022.

7.已知函數(shù)滿足f(x)=2f,當(dāng)x[1,3]時,f(x)=ln x,若在區(qū)間內(nèi),函數(shù)g(x)=f(x)-ax有三個不同零點,則實數(shù)a的取值范圍是()

A. B.

C. D.

答案:A思路點撥:當(dāng)x∈時,則1<≤3,

f(x)=2f=2ln=-2ln x.

f(x)=

g(x)=f(x)-ax在區(qū)間內(nèi)有三個不同零點,即函數(shù)y=與y=a的圖象在上有三個不同的交點.

當(dāng)x∈時,y=-,

y′=<0,

y=-在上遞減,

y∈(0,6ln 3).

當(dāng)x[1,3]時,y=,

y′=,

y=在[1,e]上遞增,在[e,3]上遞減.

結(jié)合圖象,所以y=與y=a的圖象有三個交點時,a的取值范圍為.

8.若函數(shù)f(x)=loga有最小值,則實數(shù)a的取值余攔冊范圍是()

A.(0,1) B.(0,1)(1,)

C.(1,) D.[,+∞)

答案:C解題思路:設(shè)t=x2-ax+,由二次函數(shù)的性質(zhì)可知,t有最小值t=-a×+=-,根據(jù)題意,f(x)有最小值,故必有解得1

9.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有三個不同的零點,則實數(shù)m的取值范圍為()

A. B.

C. D.

答案:

C命題立意:本題考查函數(shù)與方程以及數(shù)形結(jié)合思想的應(yīng)用,難度中等.

解題思路:由g(x)=f(x)-m=0得f(x)=m,作出函數(shù)y=f(x)的圖象,當(dāng)x>0時,f(x)=x2-x=2-≥-,所以要使函數(shù)g(x)=f(x)-m有三個不同的零點,只需直線y=m與函數(shù)y=f(x)的圖象有三個交點即可,如圖.只需-

10.在實數(shù)集R中定義一種運算“*”,對任意給定的a,bR,a*b為確定的實數(shù),且具有性質(zhì):

(1)對任意a,bR,a*b=b*a;

(2)對任意aR,a*0=a;

(3)對任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.

關(guān)于函數(shù)f(x)=(3x)*的性質(zhì),有如下說法:函數(shù)f(x)的最小值為3;函數(shù)f(x)為奇函數(shù);函數(shù)f(x)的單調(diào)遞增區(qū)間為,.其中所有正確說法的個數(shù)為()

A.0 B.1 C.2 D.3

答案:B解題思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.

當(dāng)x=-1時,f(x)0,得x>或x<-,因此函數(shù)f(x)的單調(diào)遞增區(qū)間為,,即正確.

二、填空題

11.已知f(x)=若f[f(0)]=4a,則實數(shù)a=________.

答案:2命題立意:本題考查了分段函數(shù)及復(fù)合函數(shù)的相關(guān)知識,對復(fù)合函數(shù)求解時,要從內(nèi)到外逐步運算求解.

解題思路:因為f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.

12.設(shè)f(x)是定義在R上的奇函數(shù),在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,則不等式xf(2x)<0的解集為________.

答案:(-1,0)(0,1)命題立意:本題考查函數(shù)的奇偶性與單調(diào)性的應(yīng)用,難度中等.

解題思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函數(shù)F(x)=xf(2x)在區(qū)間(-∞,0)上為減函數(shù),又由f(x)為奇函數(shù)可得F(x)=xf(2x)為偶函數(shù),且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,當(dāng)x0時,不等式解集為(0,1),故原不等式解集為(-1,0)(0,1).

13.函數(shù)f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零點之和為________.

答案:6命題立意:本題考查數(shù)形結(jié)合及函數(shù)與方程思想的應(yīng)用,充分利用已知函數(shù)的對稱性是解答本題的關(guān)鍵,難度中等.

解題思路:由于函數(shù)f(x)=|x-1|+2cos πx的零點等價于函數(shù)g(x)=-|x-1|,h(x)=2cos πx的圖象在區(qū)間[-2,4]內(nèi)交點的橫坐標(biāo).由于兩函數(shù)圖象均關(guān)于直線x=1對稱,且函數(shù)h(x)=2cos πx的周期為2,結(jié)合圖象可知兩函數(shù)圖象在一個周期內(nèi)有2個交點且關(guān)于直線x=1對稱,故其在三個周期[-2,4]內(nèi)所有零點之和為3×2=6.

14.已知函數(shù)f(x)=ln ,若f(a)+f(b)=0,且0

答案:命題立意:本題主要考查對數(shù)函數(shù)的運算,函數(shù)的值域,考查運算求解能力,難度中等.

解題思路:由題意可知,ln +ln =0,

即ln=0,從而×=1,

化簡得a+b=1,

故ab=a(1-a)=-a2+a=-2+,

又0

故0<-2+<.

B組

一、選擇題

1.已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞減,則滿足不等式f(2x-1)>f成立的x取值范圍是()

A. B.

C. D.

答案:B解析思路:因為偶函數(shù)的圖象關(guān)于y軸對稱,在區(qū)間[0,+∞)單調(diào)遞減,所以f(x)在(-∞,0]上單調(diào)遞增,若f(2x-1)>f,則-<2x-1<,

2017年數(shù)學(xué)高考

高考數(shù)學(xué)模擬試題及答案:數(shù)列

1.(2015·四川卷)設(shè)數(shù)列{an}(n=1,2,3,…)的前n項和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列。

(1)求數(shù)列{an}的通項公式;

(2)記數(shù)列an(1的前n項和為Tn,求使得|Tn-1|<1 000(1成立的n的最小值。

解(1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n≥2),即an=2an-1(n≥2)。

從而a2=2a1,a3=2a2=4a1。

又因為a1,a2+1,a3成等差數(shù)列,

即a1+搭搏神a3=2(a2+1)。

所以a1+4a1=2(2a1+1),解得a1=2。

所以,數(shù)知虧列{an}是首項為2,公比為2的等比數(shù)列。

故an=2n。

(2)由(1)得an(1=2n(1。

所以Tn=2(1+22(1+…+2n(1=2(1=1-2n(1。

由|Tn-1|<1 000(1,得-1(1<1 000(1,

即2n>1 000。

因為29=512<1 000<1 024=210,所以n≥10。

于是,使|Tn-1|<1 000(1成立的n的最小值為10。

2.(2015·山東卷)設(shè)數(shù)列{an}的前n項和為Sn。

2019年的高考數(shù)學(xué)真題試卷

17.(12分)

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為渣培虧

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長

18.(12分)

如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機(jī)抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).

(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;學(xué)科&網(wǎng)

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ–3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

(ⅱ)下面是檢驗中亂員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得,,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.

用樣本平均數(shù)作為μ的估計值,用樣本標(biāo)準(zhǔn)差s作為σ的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μ和σ(精確到0.01).

附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ

20.(12分)

已知橢圓C:x2/a2+y2/b2=1(a>b>0),四點P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三點在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

21.(12分)

已知函數(shù)=ae2^x+(a﹣2)e^x﹣x.

(1)討論的單調(diào)性;

(2)若有兩個零點,求a的取值范圍.

(二)選考題:共10分。

以上就是數(shù)學(xué)高考試題2017的全部內(nèi)容,答案:(-1,0)(0,1)命題立意:本題考查函數(shù)的奇偶性與單調(diào)性的應(yīng)用,難度中等.解題思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函數(shù)F(x)=xf(2x)在區(qū)間(-∞,0)上為減函數(shù)。

猜你喜歡

主站蜘蛛池模板: 珲春市| 新丰县| 吉隆县| 西充县| 邵阳市| 大庆市| 延津县| 平顶山市| 泽普县| 饶阳县| 甘泉县| 荆州市| 图片| 田阳县| 高碑店市| 尚志市| 铅山县| 冷水江市| 芮城县| 鄂托克旗| 大余县| 平和县| 荆门市| 平乡县| 民县| 南雄市| 会昌县| 卫辉市| 涞水县| 鄢陵县| 庄浪县| 荣昌县| 长葛市| 城市| 广丰县| 宜兴市| 青川县| 天峻县| 黎城县| 莲花县| 公主岭市|